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Abstract

This report describes the current best estimate of the Ranger IX spacecraft

flight path and the method used to analyze the tracking data. Deep Space

Instrumentation Facility tracking of the spacecraft was virtually continuous from

injection to lunar impact. TV photos of the lunar surface were received at the

Goldstone Tracking Station during the last 18 min before impacting the moon.

The lunar surface that was photographed was the area of the crater Alphonsus.

Postflight analysis of the tracking data resulted in valuable determination of the

masses of the earth and the moon, tracking station locations, lunar ephemeris

scale factor, and lunar radius of the Ranger IX is known to within 0.5 km on the
surface of the moon.
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The Ranger IX Flight Path and its Determination
From Tracking Data

I. Introduction

This report describes the current best estimate of the

Ranger IX spacecraft flight path and the way in which

the flight path was determined. Deep Space Instrumenta-

tion Facility (DSIF) tracking of the spacecraft was vir-

tually continuous from injection to lunar impact. Postflight

analysis of the tracking data resulted in valuable deter-
mination of the masses of the earth and the moon, track-

ing station locations, lunar ephemeris scale factor, and

radius of the moon at the Ranger IX impact point. The

impact location of Ranger IX was determined to within

8 km, using the standard deviation as a measure of un-

certainty.

The primary objective of the Ranger Block III (Rangers
VI-IX) flights was to obtain TV pictures of the lunar

surface. These pictures will be of benefit to both the

scientific program and the U.S. manned lunar flight pro-

gram. The Ranger IX spacecraft, which was launched

from Cape Kennedy on March 21, 1965 and which, 64 h

31 min later, impacted the moon on target, accomplished

its primary objective. The flight, as did Rangers VI, VII,

and VIII, dramatically demonstrated the capabilities of

earth-based radio guidance, and postflight analysis pro-

vided significant information in the determination of the

physical constants previously mentioned.

During the launch phase, the Atlas and Agena stages

performed within tolerance and injected the spacecraft

into an impact trajectory approximately 17 deg north of

the original aiming point. The crater Alphonsus was

selected as the area of impact, since it had favorable

lunar surface lighting conditions and the terrain was of

special interest. Thirty-nine hours after launch, a near-

perfect midcourse maneuver was executed. The resultant

impact point was 6 km from the chosen target. This dif-

ference was well within the expected error due to the
uncertainties in the orbit at the time of the maneuver and

the tolerance of the spacecraft guidance hardware.

Section II of this report describes the DSIF transponder

orbit determination. Comparisons are made among deter-

minations based on premaneuver tracking only,, post-

maneuver tracking only, and the combined estimates

based on premaneuver and postmaneuver tracking. Solu-

tions for the masses of the earth and the moon, hmar

ephemeris scale factor, and tracking station locations are
compared to determinations based upon the Mariner II

(Venus), Mariner IV (Mars), and previous Ranger mis-
sions. The determination of the lunar radius at the

Ranger IX impact point is also presented. The final TV

pictures serve as an independent check on the lunar

impact point as estimated from the orbit determination

process.

JPL TECHNICAL REPORT 32-767 1



Section III discusses the operational considerations

associated with the midcourse policy and the execution

of the maneuver. The postflight evaluation described in

this section shows that the response of the spacecraft to

the maneuver turn and velocity increment commands was

well within the expected tolerances.

Section IV summarizes the key spacecraft events for

the mission, and describes the Ranger IX orbit in terms

of its trajectory parameters near the earth, in translunar

flight, and near the moon.

Section V describes the Air Force Eastern Test Range

(AFETR) tracking of the Agena launch vehicle. The
AFETR orbit analysis is divided into three parts: (1) the

parking orbit, (2) the postiniection but pre-retrorocket

phase, during which the spacecraft was still attached to

the Agena, and (3) the post-retrorocket orbit of the Agena.

Section VI summarizes the key events in the DSIF

tracking of the Ranger IX mission and gives a general

description of the Deep Space Stations (DSS) of the

DSIF and DSIF tracking modes. The determination of

the lunar radius at the Ranger IX impact point is a direct

function of the "recorded" time of impact. The record-

ings of this event time, as measured by the DSIF

Goldstone tracking stations, are presented and discussed.

II. Analysis of DSIF Transponder Tracking Data

A. Introduction

The purpose of this section is to present the technique

used in analyzing the Ranger IX data. The best estimate

of the Ranger IX spacecraft flight path is presented along

with the physical constant solutions derived from the

DSIF tracking data. A comparison is made among

the physical constant solutions obtained from the indi-
vidual missions, Rangers III through IX, as well as

Mariner II (Venus) and Mariner IV (Mars). In general,

the degree of agreement among solutions is good.

The DSIF data are divided into two distinct blocks:

(1) data obtained prior to the midcourse maneuver cor-
rection, and (2) data obtained from midcourse maneuver

correction to lunar impact. The data are combined using

pre-midcourse maneuver correction data as a priori to

the post-midcourse maneuver data and vice versa. All
results are consistent within themselves and each other.

The initial real-time estimate of the Ranger IX space-

craft orbital elements and initial DSIF acquisition in-

formation were provided by AFETR. These elements

were obtained from tracking the Agena vehicle C-band

transponder during the period from injection into lunar

transfer orbit to Agena-spacecraft separation by the

AFETR tracking stations. The AFETR tracking data

were not used for the flight path determination results

presented in this section. A complete discussion of the

AFETR data is presented in Section V.

B. Summary of Data Used in Orbit Determination

During the Ranger IX flight, the DSIF tracking sta-

tions provided continuous tracking data starting about

10 min after transfer orbit injection until lunar impact.

Figures 1 and 2 summarize the tracking station view

periods and their data coverage for the entire mission.

Figures 3, 4, and 5 are tracking station stereographic

projections that show the trace of the spacecraft tra-

jectory for the view periods shown in Figs. 1 and 2. A

more complete sequence of tracking events and ground

station tracking modes is described in Section IV.

Table 1 summarizes the tracking data used for both

inflight and postflight analyses. The table is a perform-

ance summary of the data recording and data handling

systems. The total number of points received from each
station is shown in column 3. Columns 5, 6, and 7 are

the number of data points rejected by the JPL Tracking

Data Editing Program (TDEP), described in Ref. 1. The

TDEP edits all incoming tracking data, and prepares a

data tape for input to the Orbit Determination Program

(ODP), described in Ref. 2. The points in column 5 are

the result of applying a doppler differencing test to detect

gross errors. Whenever a data point is rejected by the

differencing test, the following data point will auto-

matically fail the differencing test and be rejected. Also,

a point rejected because of the data condition code, or a

counter restart, will cause an adjacent data point to be

lost (column 6).

During the flight operations, no attempt is made to

reconstruct data points which are rejected for bad format

or data condition code. A data point is given a bad data
condition code when automatic detectors at the tracking

station sense that the data would be unusable. These

detectors have manual overrides that are used whenever

an equipment malfunction is suspected, and during pe-

iods when the transmitter is being retuned prior to

sending commands to the spacecraft or transferring trans-

mitting assignments to another station (column 7).

The blunder points shown in column 8 of Table I result

from applying the rejection limits presented in column 9.
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STATION 12

STATION 41

STATION 51

o

MAR 21

LAUNCH

I
12

MIDCOURSE MANEUVER

1I lill L

.It

I II JJ//A
I _, , I 1 I I I

O 12 O 12 O 12

MAR 22 MAR 23 MAR 24

GMT, h (1965)

_ OBTAINING ANGLE DATA ONLY

_] OBTAINING BAD DOPPLER AND ANGLE DATA

._ TRACKING COVERAGE EXPANDED IN FIG. 2

VISIBLE, NO DATA

_ OBTAINING TWO-WAY DOPPLER DATA ONLY

_ OBTAINING TWO-WAY DOPPLER AND ANGLE DATA

Fig. 1. Ranger IX tracking station view periods and data coverage

LUNAR IMPACT

STATION 51

I I I I I I

21 22 23 O0 01 02 03

MAR 22, 1965

GMT, h

_ SYNTHESIZER, OBTAINING TWO-WAYDOPPLER AND ANGLE DATA

_] OBTAINING ANGLE DATA ONLY

:_VCO, OBTAINING TWO-WAY DOPPLERAND ANGLE DATA

D SYNTHESIZER I OBTAINING BADDOPPLER AND ANGLES

Fig. 2. Tracking coverage for Station 51 from launch to launch plus 51/2 h
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(1) (2)

Station Data

(Pass No.) type

Table 1. Summary of data used to determine orbit

(3)

Points

received s

(4) (S)

Humber of
Bud format/

points used

in real time/ (% of

(% of received) received)

Premldcourse

(6)
Poinls Iosf

due to bad

adjacent

polnt/(% of

received)

(7)

Bad data

condition

code/(% of

received)

(e)

Blunder

points/(% of

received)

(9)

Rejection

limits on

blunder

poinls

maneuver

(I0)

Poinls used

in postfligh_

analysis

obtained

from tapes _

12 2-way doppler

(1)

12 2-way doppler

(2)

41 2-way doppler

(1) HA, dec

41 2-way doppler

(2) HA, dec

51 2-way doppler

(1) HA, dec

51 2-way dopp/er

(2) HA, dec

409

341 e

99

0

594

691

2863

2923

433

711 e

373/(91.2) 5/(I .2)

165/(48.4) 0/(0.0)

30/(30.3) 4/(4.0)
0/(0.0) 0/(0.0)

469/(79.0) 48/(8.1 )
526/(76.21 51/(7.4)

484'1/(80.1) 58/(2.0)
1897/(64.9) 62/(2.1)

346/(80.0) 20/(4.6)
0/(0.0) 36/(5.1)

6/(1.5)

4/(1.2)

8/(8.1}

o/(o.o)

38/(6.4)
40/(5.8)

73/(2.5)
66/(2.3)

17/(3.9)
27/(3.8)

16/(3.9)

I 0/(2.9)

36/(36.4)
o/(o.o)

22/(3.7)
24/(3.s)

46/(I .6)
56/(I .9)

6/(1.4)
36/{5.1)

2/(0.5)

6/(I .8)

6/(6.1)
0/(0.0)

4/(0.7)
2/(0.3)

38/(1.3)
6/(0.2)

3/(0.7)

1/(0.1 )

0.2 Hz

0.2 Hz

0.2 Hz

0.2 Hz

0.3 deg

0.1 deg

0.4 Hz

0.3 deg

0.1 deg

0.2 Hz

Postmidcourse maneuver

375

165

0

468

542

337

12_ 2-way doppler

12 2-way doppler

(3)

41 2-way doppler

(3)

51 2-way doppler

(3)

301 r

585 e

557

498

156/(51.8)

165/(28.2]

465/(83.51

425/(85.3)

2/(0.7)

I/(0.2)

10/(1.8)

1 1/(2.2)

2/(0.7)

7/(1.2)

15/(2.7)

22/(4.4)

18/(6.0)

21/(3.6)

64/(I 1.5)

31/(6.2)

1O/(3.3)

0/(0.0)

3/(0.5)

2/(O.4)

0.2 Hz

0.2 Hz

0.2 Hz

0.2 Hz

IUnless otherwise specified, these numbers pertain to a 60-s data sample spacing.

haole points are obtained from station data topes to avoid transmission error.

elncludes 164 points of 10-s data taken during spacecraft reorlentat[on prior to mldcourse motor ignition. These data were not excluded in postfHght orbit computations.

aData were compressed to 6O-s. Of the 2863 data points received, 2702 data paints were 10-s samples.

eAngle data points are not usually used for orbit computations during the station's second pass.

rlncludes 85 points of |0-s data taken during spacecraft reoHentafion after mldcourse maneuver.

Klncludes 336 points of 10-s data taken prior to spacecraft impact of lunar surface.

186

270

481

426

These limits are based on experience gained in previous

missions, and on the philosophy that it is better to imme-

diately reject questionable points, which could cause

difficulties in converging to an orbit, than to attempt to

salvage every point. Further explanation of the flight path
analysis operations and policies is presented in Ref. 3.

The data shown in column 10 of Table 1 were obtained

from the data tapes punched at the stations and mailed

to JPL at the conclusion of each tracking pass. The data

tapes were converted to cards and used as input to the

postflight analysis. No data were used in the postflight

analysis for the first pass of DSS 41 (Woomera, Australia)
as shown by the zero value in column 10. The reason for

this change was that, during the first pass, DSS 41 did

not obtain two-way lock on the spacecraft (the spacecraft

was not above the minimum elevation angle of 5 deg).
During the flight, it was determined that the data ob-
tained from DSS 41 would aid in the determination of

the orbit, since, during the first 9 h of flight, the only
other tracking data available was obtained from DSS 51

(Johannesburg, South Africa). During the postflight anal-
ysis, it was determined that the low-elevation data from
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DSS 41 was questionable and should be omitted from the

orbit computations.

Column 3 of Table 1 indicates the number of points

received. It should be noted that, during most of the first

pass of DSS 51, the sample rate is one sample every 10 s.

The nominal sample rate is one sample every 60 s, except

during high acceleration and powered flight. DSS 51

maintained a 10-s sample rate for the first 5 h of flight

due to synthesizer difficulties, which were corrected.

Section VI explains this diflqculty and Fig. 2 indicates

the tracking coverage during this period.

C. Data Weighting and Error Source

The weighting scheme 1 used in the Orbit Determina-
tion Program considers all known error sources to deter-

mine the "effective variance." The expression used to

compute the effective variance ¢2 for weighting an indi-
vidual data point is

¢2 = szg_ max- 1, T.,_mplo

where

i = basic error source

A

s_ = variance of basic error source

A

g] = sensitivity coefficient

A

T ..... _,,_o, = "correlation width," in seconds,
of basic error source

'3

T,_mo_° = sample spacing, in seconds

The error sources for two-way doppler are:

(1) Error due to trajectory computations caused by
round-off error in Cowell integration method

(Ref. 3).

(2) Doppler counter rounding error caused by the start

and stop gate pulse not occurring at times such

that an integral number of cycles has passed.

(8) Transmitter drift arising from an unstable oscillator.

The reference frequency is controlled by a tem-

perature stabilized, voltage controlled oscillator

_T. W. Hamilton, "Mariner R ODP-TDEP: a priori Weighting
Coefficients," Apr. 12, 1962 (internal communication).

(VCO) or a frequency synthesizer (SYNTHESIZER)
driven by a rubidium frequency standard. The

drift rate is 1 part in 10_/15 rain for the VCO, and

3 parts in 10*'/h for the rubidium standard.

(4) Dropped or added cycles caused by low signal-to-

noise ratio where it is possible for the counter to

accept a noise pulse as a cycle count.

(5) Variation in refraction corrections due to differ-

ences between the atmospheric model used in the

calculations and the actual atmosphere at a given
time.

(6) Spacecraft antenna motion caused by spacecraft

tuInbling or stabilization motion.

The error sources associated with hour angle (HA) and

declination (dec) are:

(1) Angle jitter in electrical axis or variation about the

aiming point caused by the antenna drive servo-
mechanisms.

(2) Angle correction errors caused by differences be-

tween the empirical correction model, which is

based on the antenna optical axis, and the RF

pointing axis.

(8) Readout error caused by the encoder system inac-

curacies in compensation cams. Resolution is plus

or minus one count, which corresponds to 0.002 dog.

(4) Refraction correction errors due to the difference

between the atmospheric model used in the ODP

and the actual atmosphere at any given time.

The manner in which the error sources enter into the

weighting scheme may be seen in the expression for com-

puting the effective variance _'-' for weighting a given data

point. Table 2 shows the functional form of the sensitivity

coefficients associated with hour angle, declination, and

two-way doppler.

The contribution to the total weight due to spacecraft

tumbling was considered to be zero, since the only tum-

bling occurred between injection at 21:49:48 GMT and

sun acquisition at 22:47:80 GMT. During this period,
17 min of usable data from DSS 51 was used in deter-

mining the orbit. Data taken while the spacecraft was in

the cruise mode maintaining sun-earth lock indicated

that the effect on doppler due to tumbling was less than
0.1 Hz. From this data, it can be concluded that the

spacecraft orientation was such that the tracking station

observed very little spacecraft antenna motion.
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Table 2. Sensitivity coefficient g_ for HA, dec,

and two-way doppler

Error
Sensitivity coefficient

Hour angle Declination Two-way doppler
source

1 1/cos (dec)

2 I

3 1

4 Ar(HA)

5

6

i

1

1

_r(dec)

I

1/T_

p/c
I/(3To) v2

ar_
1

cos _ sln:(HA)

,_r(HA} -- co$:_' sin o" (._r y)

._r[dec) = cos "y sin ,_ -- sin _' cos ,_ cos o (_.r T)
cos (dec)

= geocentrlc latitude of track;ng station

"y = elevatlon angle

o" = azimuth angle

'_r_' = refractlon correction for elevation angle

57.2957795 n blb_./340.O, for "y < 0.3 rad

= 57.2957795 n X 10 -0 cot"/, for "y>_ 0.3 rod

n = _ndex of refraction, nominally 340.0

bl = 1.0 -- (1.216 X 105b_ _ ') -- (51.0 -- 300.0 _) (b3) 1/_"

b.- = [7.0 X 10 4/(0.0589 + _')] -- 1.26 X 10 -3

b:_ = 1/103 (r -- RE)

RE = earth rad;us

_.rp = 0.0018958 [(sin A d- 0.06483) -l's

-- (sin B "1- 0.06483) 1.4] n/340.0

A ----- _' _ Tc "_/2

8 = T -- Tc _/2

Tc = doppler count interval, s

p = range from statlon to spacecraft

In Table 3, it may be seen that the effect on the total

weight for the doppler counter error sources (round and

added or dropped cycles) may be minimized by using a

long-counting time. The DSIF stations take continuous
count doppler with a dual-counter system; that is, one

counter continuously counts cycles that have 15assed from
some known start time. When the continuous counter

receives a pulse to supply a doppler sample, it transfers
its contents to another counter without interrupting its

counting action. The contents of the second counter are
then translated from binary-coded decimal to decimal

and punched onto a paper tape. Doppler refraction cor-

rection (error source 5) is not a predominant error source,

except possibly for the early part of a mission when the
elevation angle is changing rapidly. During the first hour

of the Ranger IX mission, only 17 min of early usable

doppler data were available from DSS 51. The transmitter

reference frequency drift (error source 8) is a major con-

tributor to the total doppler weight for stations using

VCO; but the drift is negligible when using the SYN-

THESIZER. For example, near lunar encounter where

the contribution from this error source is a maximum, the

error attributed to the frequency drift for the SYNTHE-

SIZER is ¢r2 --0.08756 X I0 -4, and for the VCO it is

_2 = 875.6 × 10% During the Ranger IX mission, all data

except for the first two hours were obtained using the
SYNTHESIZER.

For the angular data types (HA and dec), the pre-

dominant error sources were angle correction errors and

encoder errors. During the Ranger IX mission, calibration

errors up to a 0.1 deg and encoder errors of approximately

0.03 deg peak-to-peak were noted. Plots of these errors

may be seen in Figs. 6 and 7 in which the residuals repre-

sent the error remaining after the angle corrections had

been applied. Due to these large errors, angular data were

not used in the orbit calculations, except during the early

phase of the mission. The angular data were very helpful

in obtaining the first orbital estimates, since there was a

scarcity of usable data during the first two hours after

injection. The contribution due to refraction correction

errors was relatively small and was not used for local

elevation angles greater than 5 deg. The effect of angle

jitter errors on the total HA weight was determined by

the declination angles observed during the mission. For

Ranger IX, declination angles ranged between 837 and

1 deg. In Table 2, it may be seen that this error source

contributed very heavily to the total HA weight for
declination angles near 90 and 270 deg.

The sample spacing to be used at the tracking stations

is determined by the tradeoff between doppler counter

rounding errors and truncation errors occuring in the

doppler frequency computations. The expression used in
the ODP for these computations is

[(tob) = F(t)dt

where

[(rob) = integrated doppler frequency, which should

be observed by a station at time tob

1
T = tob - -_

r = sample spacing

F(t) = instantaneous frequency of doppler shift,
which should have been observed at time t

JPL TECHNICAL REPORT 32-767 9
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This integral is evaluated by expanding a Taylor series

about T and integrating term-by-term leading to

T 3

=  F(r) + o-g-(P(t)+ O(e')

Thus, the truncation error is a function r and the fourth

derivative of the frequency (which is, in turn, dependent

on the fifth derivative of range).

For this mission, sample spacing had to be reduced

during three phases of the flight: (1) near earth, (2) dur-

ing maneuver motor thrusting, and (3) near lunar en-

counter. For these phases, sample spacing of 10s was

used. At all other times, a sample spacing of 60 s was used.

It is believed that the total weight applied to HA, dec,

and doppler is on the conservative side, and that all error

sources, which contribute a measurable amount to the

total weight, have been taken into account.

D. Premaneuver Orbit Based on Premaneuver

Tracking Data

Table 4 summarizes the data used in the postflight

analysis of the premaneuver data, and presents the sta-

tistics pertaining to these data. It should be noted that

only two-way doppler data were used in the postflight

orbit analysis. Angular data were not used because of

biases due to the inadequacy of the angular correction
model.

However, the angular data are extremely helpful in

real-time orbit determination, especially when there are

data from only one station. Due to the geometry of the

orbit, the angular data contributes very little to the im-

provement of the knowledge of the orbit after approxi-

mately 13 h of tracking. The angular data biases may be

seen in Figs. 6 and 7, and the correction model errors

will be explained in Section VI.

From Table 4 it may be seen that the noise level for

all stations was between 0.0007 and 0.001 m/s (1 Hz =

0.156 m/s) when using a 60-s sample rate. The early data

from Stations 51 and 41 had a higher noise level (0.005

and 0.003 m/s, respectively), since the higher sample rate

causes greater quantization error, due to the one sample

per I0 s obtained during the high spacecraft acceleration

(see Section II-C, next to last paragraph).

Residual plots (observed data value minus value cal-

culated from the orbit determination program) for the

premaneuver data may be seen in Figs. 8-1,3. It should be

noted that these residual plots do not pertain to this

particular calculation, but, as will be pointed out in the

section on combined results, they deviate by an insignifi-
cant amount from the residuals of this orbit calculation.

Columns 1--,'3of Table 5 show the parameters that were

estimated and the a priori information used. For this

orbital calculation, large uncertainties were placed on the

a priori of all parameters so that the final solution would

be determined from the tracking data with very little
influence from a priori. For the station location uncer-

tainties, the X1, X2, and X3 coordinate system (centered

at the tracking station) was used (see Fig. 19). In this

system, X1 and X_ were parallel to the equatorial plane
with X_ in the longitude direction and XI normal to the

earth's spin axis. The coordinate X_ was in the direction

of the earth's spin axis. One-_ a priori wdues of 500, 500

and 100 m were used for X,, X_,, and X:,, respectively,

and then rotated into the station spherical coordinate sys-

tem (radius, latitude, and longitude, respectively) for

input into the ODP.

Column 4 of Table 5 contains the statistics associated

with this orbital calculation at injection epoch, maneuver

epoch, and lunar impact. The most significant result here

is the solution for GM, and the probe position and

velocity. Position at injection is known to within 0.4 km

and velocity to within 0.5 m/s. At maneuver epoch, the

velocity uncertainty has decreased. This decrease in

the velocity uncertainty is related to the velocity of the

spacecraft at the two epochs. At maneuver epoch,

the spacecraft is moving slowly (1.5 km/s), while at in-

jection epoch its velocity is fast (11 km/s). The velocities

uncertainties when associated with the magnitude of the

velocity of the spacecraft at each epoch are very nearly

the same. The correlation matrices, both in space-fixed

Cartesian and earth-fixed spherical coordinates, are shown

in Table 6 (at injection epoch) and Table 7 (at man.euver

epoch).

It is interesting to note that the uncertainties of the

parameters estimated, using the premaneuver data, are

well below the a priori uncertainties and, for the most

part, are below those of Rangers VI, VII, and VIII. This

is due to the midcourse maneuver correction being per-

formed on the second pass over Goldstone (DSS 12) for

Ranger IX (launch + 88 h) as compared to the first pass

over Goldstone (launch + 16 h) for Rangers VI, VII, and
VIII.
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Table 4. Statistics on premaneuver data

Station

12

41

51

Number

of

doppler

paints

107

215

53

88

77

19 c

10

458

7 e

114 c

410

11

337

Standard

deviation,

Hz a

0.0082

0.0077

0.0070

0.0078

0.0071

0.0236

0.0047

0.0077

0.0675

0.0572

0.0078

0.0104

0.0076

No a priori from postmaneuver

Mean, Hz

0.0006

0.0006

--O.O014

--0.0008

0.0040

0.0028

0.0065

O.0011

0.0845

--0.0025

0.0008

0.0007

O.0001

Remarks b

Data taken below 17-deg elevation

using rubidium frequency standard

Data taken above 17-deg elevation

using rubidium frequency standard

Data taken below 17-deg elevation

using rubidium frequency standard

Data taken below 17-deg elevation

using rubidium frequency standard

Data taken above 17-deg efevatlon

uslng rubldlum frequency standard

Data taken below 17-deg elevation

using rubidium frequency standard

Data taken below 17-deg elevation

using rubidium frequency standard

Data taken above 17-deg elevation

using rubidium frequency standard

Data taken below 17-deg elevation

using VCO

Data taken above 17-deg elevation

using VCO

Data taken above 17-deg elevation

using rubidium frequency standard

Data taken below 17-deg elevation

uslng rubidium frequency standard

Data taken above 17-deg elevation

using rubidium frequency standard

With postmaneuver

as a priori

With postmaneuver as

a priorl plus REM constraint

Standard

deviation,

Hz

Standard

deviation, Mean, Hz

Hz

0.0084 0.0037

0.0075 0.0018

0.0070 0.0005

0.0081 --0.0017

0.0074 --0.0013

0.0237 --0.0042

0.0046 0.0132

0.0079 0.0034

0.0677 0.0525

0.0580 --0.0109

0.0082 --0.0012

0.0104 0.0035

0.0078 0.0008

0.0084

0.0075

0.0070

0.0081

0.0072

0.0237

0.0046

0.0080

0.0684

0.0572

0.0059

0.0103

0.0080

Mean, Hz

--0.0021

--0.0042

--0.0061

--0.0100

--0.0096

--0.0013

0.0073

--0.0037

0.0566

--0.0120

--0.0034

--O.0013

--0.0070

aln the Ranger IX station configuration for L-band frequency, I counted doppler cycle -- 0.156 m.

bRemarks concerning rubidium frequency standard and VCO refer to the method used to pravlde ground station transmitter reference frequency.

CSample rate |s 1 sample per lO-s count; all other statistics refer to 60-s sample rate data.
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Numerical values of the estimated parameters are pre-
sented in Table 8, column 4. The encounter statistics

obtained from integrating the trajectory forward to im-

pact may be seen in Table 9, column 3. For certain

parameters, the B-plane system (see Appendix A) is used

(Ref. 4). The statistics associated with the impact param-

eters are given in Table 10, column 1. In this table, the

semimajor axis (SMAA) and the semiminor axis (SMIA)

are the square roots of the eigenvalues of the covariance

matrix in the B plane, and DEL T is the uncertainty in

linearized time of fight.

The conclusions of the premaneuver data analysis are

that a good fit is made using the doppler data and that
the solution vector of the physlcaI constants is consistent

with presently accepted values. The only really startling
value is that of GM, which differs from all other solutions

(see Table 21, estimates for GM_). It should be noted that
its difference with the nominal value is still well within

its associated uncertainty.

E. Postmaneuver Orbit Based on Postmaneuver

Tracking Only

Table 11 summaries the data used in the postflight

analysis of the postmaneuver data, and presents the sta-
tistics associated with these data. The noise level in the

postmaneuver data for all stations was between 0.0013

and 0.0010 m/s when using a 60-s sampling rate. Residual

plots for the postmaneuver data are given in Figs. 14-17.

It should be noted that these residual plots do not pertain

to this particular calculation, but, as wiII be pointed out

in the section on combined results, they deviate by an

insignificant amount from the residuals of this orbit. All

postmaneuver data was compiled using the rubidium

frequency standard, rather than the VCO, making the

visible data noise almost entirely quantization error.

Figure 18 shows the high resolution of this doppler data

in the pitch turn of the spacecraft to reacquire the sun
after the midcourse maneuver. The midcourse maneuver

was performed during the second Goldstone (DSS 12)

pass.

The a priori information for the postmaneuver orbital

calculation is the same as that used for the premaneuver

analysis. Statistics associated with the estimated param-
eters are shown in column 7 of Table 5. The orbital

Cartesian uncertainties at maneuver epoch are for the

most part greater than the uncertainties based on pre-

maneuver data only. The reason being, the postmaneuver

orbit is computed using approximately 25 h of tracking

data as opposed to 41 h of tracking used in the prema-
neuver calculations. Another factor that should be con-

sidered is the near-earth phase versus the distant-earth

phase, corresponding to premaneuver and postmaneuver

data packages. The only significant change is that of

GM,, which was reduced by a factor of three from the

premaneuver data. The standard deviation would have

been further reduced, but the last 12 min (explained in

Section VI) obtained prior to impact was lost due to an

equipment failure at Goldstone (DSS 12).

Table 9. Impact parameter estimates

(1)

Pa rameters a

B.TT

B .RT

rFb

Selenocentrlc latitude

Setenocentric longitude

GMT d

12)

Units

km

km

h

deg

deg

hms

(31

Premaheuver

data only

1629.8793

--447.24400

64.618977

4.078

357.796

14:26:56:32 e

14)

Postmaneuver as

a priori for

premaneuver

1627.9163

--451.17344

64.618462

4.154

357.751

14:26:54.46 e

(5)

Postmaneuver

dala only

1561.0793

409.219

25.628329

--12.925

357.634

14_08:19.99 _

(6)

Premaneuver as

a priori for

postmaneuver

1560.8802

410.51725

25.628319

--12.950

357.632

14:08:19,95 e

17)

Best impact

location and time

of Impact

--12.817"

357.667 _

14:08:19.99 r

aSee Appendixes A and G for definitions.

bTime of flight for impact.

eprelimlnary values based on anatyses from ACIA (Aeronautical Chart and Informotlon Center], U.S. A;r Force.

aOccurred on Mar. 24, 1965.

eBased on a lunar radius of 1735.75 km.

_T_me at which Station 12 recorded loss of signal from spacecraft, corrected for signal transit time.
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Table 10. Statistics in the B-plane system

(1)

Premaneuver data only

Correlation matrix

B .R B.T Yt

1.000 0.045 0.010

1.000 -- 0.956

1.000

Standard

deviation

13.620 km B • R

14.082 km B • T

8.057 s TL

SMAA _ 14.239 km

$MIA ----- 13.456 km

DEL T = 8.057 s

e b _- 153.050 deg

(4)
Postmaneuver as a priori

for premaneuver

Standard

deviation

6.026 km B • R

4.239 km ]] " T

1.671 s TL

Correlation matrix

B.R B.T TL

1.000 --0.564 0.224

1.000 --0.888

1.000

SMAA --'-- 6.656 km

SMIA _- 3.175 km

DEL T = 1.671s

fib -- 61.302 deg

(2}

Postmaneuver data only

Correlation matrix
Standard

deviation

32.514 km B " R

5.670 km B • T

2.573 s TL

SMAA z 32.912 km

SMIA z 2.467 km

DEL T ---- 2.573s

0 b -- 81.051 deg

B.R B.T ?t

1.000 --0.898 --0.886

1.000 0.605

1.000

Standard

(3)

Premaneuver as a priori

for posfmaneuver

(5)

Premaneuver as a priori to postmaneuver

with REM constraint"

Correlation matrix

B .R B. T TL

1.000 0.840 0.970

1.000 0.788

1.000

Standard

deviation

2.310 km B*R

0.739 km B • T

0.003 s TL

SMAA _ 2.395 krn

SMIA ---- 0.387 km

DEL T ---- 0.097 s

8 b = 105.45 deg

deviation

8.693 km B • R

2.902 km B • T

0.226 s TL

SMAA z 9.125km

SMIA -- 0.855 km

DEL T ---- 0.226s

fib _ 72.226 deg

Correlation matrix

B • R B.T TL

1.000 --0.951 0.589

1,000 --0.795

! .{300

aREM constraint Is applied and results converted to seienocentri'c coordinate system. All other results in geocentric system.

bO is measured counterclockwise from lunar equator to SMAA,
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Table 11. Data statistics on postmaneuver data

With premaneuver With premaneuver data as

Number No a priori from premaneuver data as a priori a priori plus REM constraint

of

doppler Standard Standard

points a deviation, b Mean, Hz Remarks c deviation, Mean, Hz

Hz Hz

Station

12 138

49

99

171

41 481

51 426

0.0069

0.0086

0.0077

0.0075

0.0072

0.0077

0.0002

--0.0010

0.0010

0.0011

0.0000

0.0000

Data taken above 17-deg elevation

using rubidium frequency standard

Data taken below 17-deg elevation

using rubidium frequency standard

Data taken below 17-deg elevation

using rubidium frequency standard

Data taken above 17-deg elevation

using rubidium frequency standard

Data taken above 17-deg elevation

using rubidium frequency standard

Data taken above 17-deg elevation

using rubidium frequency standard

Standard

deviation, Mean, Hz

Hz

0.0069 0.0030

0.0091 --0.0099

0.0075 0.0011

0.0071 --0.0001

0.0073 --0.0007

0.0078 0.0003

0.0069

0.0091

0.0074

0.0072

0.0072

0.0077

0.0037

--0.0076

--0.0003

0.0001

--0.0005

0.0002

IAII 60-s sample rate.

bin the Ranger IX staHon configuration for L-band, 1 counted doppler cycle ___0.156 m.

eRemarks concerning rubidium frequency standard refer to method used to provide ground station transmltter reference frequency.

Numerical values for the estimated parameters are

given in column 7 of Table 8. A consistency check be-

tween the premaneuver and the postmaneuver orbits was

made using the position vector at maneuver epoch. This

check was accomplished by correcting the premaneuver

position vector by an amount determined by the velocity

change due to the maneuver execution, and comparing

this new value with the postmaneuver value. The results

of these comparisons are shown in Table 12. The solutions
are well within the 1-_r uncertainties.

Encounter conditions for this orbit are shown in col-

umn 5 of Table 9. The impact time was based on a lunar
radius of 1785.75 km. During flight, a radius value of

1736.6 km was used, predicted from Rangers VI, VII,

VIII, and the U.S. Air Force ACIC (Aeronautical Chart

and Information Center) Lunar Chart LAC 77. Predicted

impact time was within 0.83 s of the observed impact.

This prediction was made approximately 45 min from

impact. The B-plane statistics associated with the en-

counter conditions are given in column 2 of Table 10.

Table 12. Position at maneuver epoch

Postmaneuver-

Premaneuver only Postmaneuver only premaneuver, km

X -- 19400.576

AX --0.158

X_.._X -- 19400.734 ±12.6

Y --262235.28

_.Y --0.14

Y-I-_Y --262235.42 _-_3.7

Z -- 124767.60

AZ --0.17

Z_Z --124767.77 _-_8.0

--19399.787 -_- 6.3

--262236.59 ± 6.6

--124767.90 ±27.4

+ 0.947

--!.17

--0.13

Note: The As are the positional changes during maneuver motor burn from the

relationship:
1 _ t

2 2

The conclusion of the postmaneuver data analysis is

that a good fit was made using doppler data and the
solution vector on the physical constants is consistent

with presently accepted values.

F. Combined Estimates Based on Premaneuver

and Postmaneuver Tracking

I. Method of combining premaneuver and postmaneu-
ver data. To obtain a better estimate on the post-

maneuver orbit, the solution vector and its associated

covariance matrix from the premaneuver data were used

as a priori for the postmaneuver data. The same was done

for the premaneuver orbit where the postmaneuver data

were used as an a priori covariance matrix for the pre-
maneuver data.
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The method used for obtaining the premaneuver esti-

mate, using postmaneuver data, is 2

MANEUVER (2)

IMPACT where

_INJECTION A2_

Aq*= (A WA, + O, - C,)

+ A;'1(q,,- q,)]

and

q* = q_ + ±q** = best premaneuver estimate using
all data

= U(A: + :%)U r

Aa = (A;WA: + ._-')-'

U = matrix that maps (q_ - q,,,) to injection

= a priori eovariance

observable in block (i) (postmaneuver), i = 1 for premaneuver

estimated parameter, i = 2 for postmaneuver

q__, = U(q, - q,,,)

q= = solution vector of estimated parameters from

block (2) data only

A= = (ArWAa) -1 = covariance on estimated param-
eters from block (2) data only

W = diagonal weighting matrix on observables

O - C = residuals (i.e., observed data minus calculated

data)

A,,, = covariance of maneuver (diagonal purposely

set to a very pessimistic value of 0.1 m/s)

qm = maneuver estinaate based on maneuver com-
mands

Similarly the expression for the postmaneuver estimate,

using premaneuver data, is

hq* = (Ar_WA.,. + ,k-"_-',=/[A;W(O... - C2)

+ A_' (q,_ - q_)]

and

q* = Aq* + q, = best postmaneuver estimate using
all data

"This method was applied by W. L. Sjogren during the postflight

analysis of Ranger VI tracking data.

2. Results of combining premaneuver and postmaneu-

vet data. The statistics of the estimated parameters based

on combining the premaneuver data using the post-

maneuver as a priori are given in column 5 of Table 5.

It may be noted that the uncertainties have been signifi-

cantly reduced from those based on using premaneuver

data only (compare columns 4 and 5 of Table 5). A much

stronger solution for GM,, GM_, and REM is indicated

when combining premaneuver and postmaneuvcr data.

The numerical values for the estimated parameters are
shown in column 5 of Table 8. The differences between

the solution vectors of the premaneuver data only and

those using postmaneuver data as a priori for the pro-

maneuver data are essentially within the uncertainties

seen in column 5 of Table 5. However, they should be

the same; this error is due solely to numerical problems

in handling all the matrices.

The encounter conditions for the premaneuver trajec-

tory are in columns 3 and 4 of Table 9. A comparison of

the B-plane statistics (Table 10, columns 1 and 4) reveals

a significant reduction in the statistics for the combined

estimate. The correlation matrix for the premaneuver data

at maneuver epoch is given in Table 7.

The trajectory and the ODP printout, including the

data weights and doppler residuals, for this orbital esti-

mate may be seen in Appendixes B, C, E, and F. Expla-

nations of the printout forms are given in Appendixes
D and G.
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For the postmaneuver orbit, using premaneuver as

a priori, the estimated parameter statistics, (column 8 of

Table 5), show a significant reduction in the uncertainties

when compared to the values obtained using the post-

maneuver data only. In comparing the postmaneuver

orbit using premaneuver data as a priori with the pre-

maneuver orbit using postmaneuver data as a priori, it is

noted that indeed the same uncertainties on the physical

constants and station locations are obtained (Table 5,

columns 5 and 8). The estimated values of physical con-
stants and station locations for that combined solution

(Table 8, columns 5 and 8) are well within the 1-_ vaIues

presented in Table 5. This method of combining the two

blocks of data is derived with the philosophy of estab-

lishing two methods of fitting the data.

The forward solution (postmaneuver using premaneu-

ver data as a priori) is considered the most accurate due

to the mechanics involved. The premaneuver orbit using

the postmaneuver data as a priori requires mapping the

postmaneuver data covarianee matrix back to the injec-

tion epoeh, which uses programs other than the ODP;

therefore, the additional external manipulations cause

numerical error to creep in. In theory, the two solutions

should be directly comparable. In the Double Precision

Orbit Determination Program and the Double Precision

Trajectory Program, which are in the process of being

developed, these small differences should not exist. For

information, the correlation matrix data are given in
Tables 13-16,

The difference between the solution vectors of the post-

maneuver data only orbit and the postmaneuver orbit

using premaneuver data as a priori are within the uncer-
tainties seen in Table 5, column 8. The encounter con-

ditions for the postmaneuver trajectory are in Table 9,

columns 5 and 6. A comparison of the B-plane statistics

(Table 10, columns 2 and 3) reveals a reduction in the
statistics by a factor of 3. The trajectory and the ODP

printout, including the data weights and the doppler

residuals for this orbital estimate may be seen in Appen-

dixes C and F, respectively.

The significance of combining the two phases is dra-

matically seen in GM,, GM_, and REAl, which are mea-

sured to a lesser uncertainty than each separate estimate.

This significance is also noted in station location uncer-
tainties. In the orbit determination program, REAI is

estimated uncoupled from GAle and GM_, while in reality

REAI is dependent on GMe and G3f_. REAI is related to

the GMs by the following constraint (Refs. 5 and 6):

REM = 86.815745 (GAle + GM_) '_

If REM is calculated from the constraint equation, the

value obtained in Table 8 yields an REAl equal to

6887.8156 km, which is a -9.8-m change from the nomi-

nal. The solution in the ODP is a -24.7-m change from

the nominal; this change is 14.9 m from the constraint

value. The correlation matrix is displayed in Table 17.

The method used to apply the REM constraint to both

the best premaneuver and postmaneuver solutions (i.e.,

the premaneuver orbit with postmaneuver data as a priori

and the postmaneuver orbit with the premaneuver data
as a priori) was developed by D. L. Cain2 Briefly, this

method sets the constraint equation equal to G:

G =REAI - 86.815745 (GAle + GM_) v_ = 0

and uses a Lagrange multiplier on the original function
to be minimized and constrain G:

q,,= A rw(O-C)

q_ = A r WA + hG

where

qo = original function

q_ = constrained function

A = residual = observed value - calculated value

W = diag°nal weighting matrix E@ "- - j,

X = vector of Lagrange multiplier

When the first-order terms are collected after taking

the partials to minimize q, the resulting solution can be

expressed in terms of the original solution plus one addi-
tional term. The new solution vector q_ is obtained by

q,, = qo + 8 q

where

8q = AoC r(CAoCr) -_D

_G
C-

?q

_D. L. Cain, "Least Squares With Side Constraint," Jan. 2, 1968
( internal communication ).
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D = value of G where estimates for REM, GMe,

and GM_ from the original orbit solution are

placed in constraint equation

Ao - the original covarianee matrix

and the constraint statistics are

Ac = Ao -- Ao C r (C A0 Cr) -1 Cit

The above computations were performed using the
solutions from both the combined orbits. These results

are presented in columns 6 and 9 of Table 5, in which it
can be seen that the uncertainties in the Cartesian coor-

dinates and the physical constants have been reduced.

Again, it should be noted that, in both cases, the statistics

in station locations and physical constants are consistent.

Statistics in the B plane have had the REM constraint

applied, but, in addition, they have also been transformed

from geocentric to selenocentrie uncertainties, 4 giving a

proper uncertainty to the impact location. These statistics
are presented in Table 9. Figures 14-17 show the resid-

uals from the postmaneuver orbit with premaneuver

a priori plus the REM constraint. In both cases, deviations

on the residuals seen in the previous orbital estimates

were insignificant. This deviation ean be verified by com-

paring the residuals in the figures to those listed in the

ODP printouts in Appendixes E and F for the appropriate

data blocks. The listings in Appendixes E and F do not

have the constraint applied.

The best estimate of the maneuver ean now be ob-

tained by using the combined solutions. The numerical

values are shown in Table 18, and a more complete dis-

cussion of the estimate maneuver is given in Section III-C.

The conclusions of this combining analysis are:

(1) The combined solutions are very nearly the same in

estimating station locations and physical constants
and their associated uncertainties.

(2) The use of the REM constraint gives a solution for

the estimated parameters which are acceptable.

The use of the REM constraint as applied in this analysis

has certain limitations, for example, if the original Covari-

'C. Thornton, "'Covariance Matrix of Spacecraft Selenocentric Carte-

sian Position and Velocity," Nov. 14, I963 (internal communi-

cation ).

ance matrix (Ao) has statistics that are small (tight statis-

tics computed from clear or relatively noise-free data),

the calculation of (CAoCr) -1 presents a large value that

is not realistic. For the Ranger IX analysis, the con-

strained estimates are acceptable and are presented as
the final solution.

G. Observations and Conclusions

I. Station locations. Considerable information can be

obtained from radio tracking data, especially in deter-

mining station locations. The available information is

not immediately obvious, since examination of the covar-
lance matrices from the various orbit calculations indi-

cate that the most information compiled is on station

longitude. A different coordinate system will show that

another direction normal to longitude is measured much

better and that differences in station parameters are de-

termined significantly better than absolute station loca-

tions. The coordinate system used to show this difference
is the Xb X_, and X_, system, _ shown ill Fig. 19. Where

Xx is normal to the earth spin axis, passing through the

station in the station meridian plane; X._ is similar to

longitude, normal to X_ and to the earth spin axis; and

X_ is parallel to the earth spin axis.

_D. L. Cain, "Tracking Station Coordinate Systems," June 24, 1964

( internal communication ).

EARTH

SPIN AXIS

/
/

/
/

/

Fig. 19. X_, X_, and X:_coordinate system
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Table 18. Ranger IX maneuver estimate based on combined solutions

Premaneuvor pos;tion

and velocity"

X _ -- 19399.532

AX ---- --0.158

X + AX ---- --19399.690

Y _ --262236.40

AY ---- --0.14

Y + AY _ --262236.54

Z _ -- 124765.27

AZ ---- --0.17

Z+AZ----

DX ----

DY ----

DZ ----

-4- 2.90 km

+ 2.55 km

-- 124765.44 --I- 5.66 km

0.14653538 -I-0.0000135 km/s

--1.2000017 -¢-O.O000125 km/s

--0.49806944 -_- 0.0000300 km/s

Postmaneuver position

and veloclty b

-- 19399.676 "4-2.90 km

--262236.45 + 2.55 km

-- 124765.10 + 5.64

0.13594896 -f" 0.0000271 km/s

--1.2091034 -4- 0.0000197 km/s

--0.50967789 _--- 0.0000423 km/s

Position and velocity

change due to

maneuver {postmaneuver-

premoneuver)

+0.014 km

+0.09 km

+0.34 km

--10.5864 m/s

--9.1017 m/s

--11.6084 m/s

Velocity changes

based on

maneuver changes

vs orbit

estimates, %

--0.379

+0.191

+0.057

abased on premoneuver orb;t calculations using postmaneuver data as a priori.

bBased on postmaneuver orbit calculations using premaneuver data as a priori.

Note: As are the posit;on changes durTng maneuver motor burn from the re]ationsh|p:

1 v.r t

AX = T a r t: = --2 ' AX --> _,Y _ _Z.

As previously mentioned, X1 and X2 can be well deter-

mined, but X3, which is parallel with the earth spin axis,
is not well determined as is evident in Table 19. This

table shows the 9 × 9 normalized covariance matrix of

the station location rotated from the radius, latitude, and

longitude system into the X1, X2, and X3 system (i.e.,

lower part of Table 17 rotated). The 1-_ a priori used in

the initial estimation was 500, 500, and 100 m for X1, X2,

and X3, respectively. From the uncertainties in the final

estimate, it can be seen that no new information was

available for X_. The best estimates of X1 and Xz are

obtained when the tracking station is provided with long

coverage of the spacecraft (essentially from horizon to

horizon). It is evident from Fig. 1 that the rise and set

data were not obtained during the Ranger IX mission;

therefore, this loss of valuable information degrades to
the station location estimates.

Table 20 shows that the Ranger IX statistics for X1 and

X= are in most cases larger than the Rangers VI, VII, and

Table 19. Station location statistics

Standard

deviation,

m

Coordinate

(station)

Xl

(12)

X2

(12)

X3

(12)

Xl

(41)
X2

(4t)

X3

(41)
Xl

(Sl)
X2

(Sl)
X3

(Sl)

22.897 Xl (I 2) 1.000 --0.277 0.056 0.526 --0.334 0.005 0.428 --0.343 --0.030

44.979 X2 (12) 1.000 0.014 --0.393 0.955 --0.013 --0.423 0.957 --0.001

X3 (12) 1.000 0.011 --0.005 --0.001 0.008 --0.007 0.002

X] (41) 1.000 --0.434 0.055 --0.0400.656

-- 0.472

--0.407

X2 (41 ) 1.000 -- 0.007 0.967 0.032

X3(41) 1.000 0.013 --0.014 0.008

Xt (51) 1.000 --0.476 0.041

X2 (51 ) ! .000 0.034

x3 (51 ) 1.000

99.906

18.418

48.944

99.766

19.693

49.130

97.130
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Station" I

AI 1

Ax 2

Ax 3

O'x1

_rx2

_rx3

Ax 1

Ax 2

Ax 3

o-x1

crx2

o'x3

(12)

Table 20. Station location comparison

-- 157.8

--93.2

--110.4

13.5

44.0

99.9

-- 133.3

-- 103.2

191.0

26.0

26.0

26.0

A_:. 1 --166.7

Ax 2 --92.1

Ax a --2.7

o'x 1

o'x 2

Gx 3

1
(41) (51} (12-41) J

Mariner II

A b ---- (Mariner II) -- (old survey)

New survey

A = (new survey) -- (old survey)

--63.5 --17.8

-- 3.3 0.0

41.4 --16.1

26.0 26.0 36.8 36.8

26.0 26.0 36.8 36.8

26.0 26.0 36.8 36.8

Ranger VIII

A = (Ranger VIII) -- (old survey)

13.5 --55.7 --180.2 111.0

156.5 --11.7 --248.6 --80.4

1.3 --27.6 --4.0 24.9

,,25,,1,,,,,,Sta, o.I .2,I
Ranger VI

A = (Ranger VI) -- (old survey)

A.r 1 --169.5

Ax 2 --123.2

Ax_ 1.6

_rx 1 9.6

=x._ 35.5

O'x 3 99.8

25.0 --81.9 --194.5 --87.6 160.9

122.1 --45.5 245.3 --77.7 167.6

48.3 --49.0 --49.9 47.4 97.3

38.0 19.0 39.2 21.6 43.6

43.3 40.0 21.5 18.8 22.2

83.0 92.0 128.4 135.9 11 1.3

Ranger VII

.3, : (Ranger VII) -- (old survey}

36.8

36.8

36.8

Ax 1 --166.4 2.7 --63.4 --169.1 --103.0 66.1

Ax 2 --112.1 143.2 --38.9 --255.3 --73.2 182.1

Ax 3 2.7 --12.7 --30.6 15.4 33.3 17.9

o'a I 8.8 29.2 21.6 30.5 23.3 36.3

O'x 2 23.5 30.9 28.3 22.9 17.7 22.2

a",_:_ 99.9 98.5 100.0 140.3 141.4 140.4

Ranger IX

A = (Ranger IX) -- {old survey)

69.2

168.2

28.9

Ax 1 -- 173.9 26.5

Ax_ --54.4 205.3

A.ra --0.2 --1.8

O'x 1 22.9 18.4

O"x2 44.9 48.9

o'x 3 99.9 99.8

--47.6 --200.4 --126.3 74.1

20.2 --259.7 --74.6 185.1

-- 26.5 1.6 26.3 24.7

19.7 20.5 22.9 15.8

49.1 14.6 14.4 12.6

97.1 141.3 139.2 138.7

RDSS 12--Goldstone Echo Site, Callfornia.

DSS 41--Woomera, Australia.

DSS 5t--Johannesburg, South Africa.

ball values are in meters.

VIII missions. Table 20 also contains a summary of solu-

tions obtained from tracking data taken during actual

missions compared to land survey locations (old survey).

The "new survey" refers to a reevaluation _"of locations

when the basic reference, the Clarke spheroid of 1866,

was changed to the "Kaula" or "165" spheroid.

The quality of the data on Ranger IX is increased as

compared to Rangers VI and VII, since essentially all

tracking was obtained using the rubidium frequency

standard, which significantly reduces the noise level of

the data. The estimates for Rangers VI, VII, VIII, and IX

are all within each 1-_r estimate.

2. Physical constants. Estimates on three physical con-

stants were obtained from the tracking data. GM+, GM_,

_J.Heller and H. Kieffer, "DSIF Station Locations," May 1964 (in-
ternal communication).

and REM were estimated with uncertainties and values

near those computed for Rangers VI, VII, and VIII.

This comparison may be seen in Table 21 and Figs. 20
and 21. Results of Rangers III, IV, and V have been

included to show the consistency obtained from the

Ranger missions. Solution uncertainties for Rangers IV

and V were largely due to the limited amount of available

tracking data. Note that the uncertainty for GM¢ for

Ranger IX was not reduced from the nominal JPL value

adopted after the Mariner II mission. The reason for this

large uncertainty was due to a loss of signal (two-way

doppler) 12 min prior to impact. The loss was due to a
malfunction at the tracking station.

Comparison of the Rangers VI, VII, VIII, and IX solu-

tions (Table 21 and Figs. 20 and 21) showed agreement

in GM+ and GM¢. The consistency of the four Rangers

and the Mariner was of significant interest, since they
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Table 21. Physical constants estimate

GMeart h estimate = GM e

Standard
Value,

Source km_/s __ deviation, Remarks
km3/s _

Nominal JPL _

Ranger 111

Ranger IV

Ranger V

Ranger VI b

Ranger VII t'

Ranger VIIP

Ranger IX b

398603.20

398600.49

398601.87

398599.20

398600.61

398601.29

398601.08

398601.41

4.0

-4- 4.1

_13.3

_13.2

± 1.1

-P- 1.5

± 0.70

0.58

4 days of tracking

8 h of tracking

8 h of tracking

65 h of tracking

6"8 h of tracking

65 h of tracking

64 h of tracking

GMmoon estimate = GM(

Nominal JPL (prior

to Mariner IO

Nominal JPL (after

Mariner If)

Ranger VP

Ranger VIP

Ranger VIIP

Ran ger IX t'

Mariner IV

4900.7589

4902.7779

4902.6182

4902.5801

4902.6351

4902.6932

4902.7560

-I- 0.14

+ 0.17

_- 0.12

± 0.24

_+- 0.10

Venus cruise data

taken during

Mariner I!

65 h of tracking

68 h of tracking

65 h of tracking

64 h of tracking

Mars cruise data

taken during

Mariner IV

nKaula, 1961 (adapted by the Ad Hoc NASA Standard Constants Committee,

Ref. 11].

bWith REM constraint applied.

were obtained from two different methods. That is, the

Mariner solution was obtained by the 28-day periodic

effect of the moon in the Mariner cruise phase data

(Ref. 7); whereas, the Ranger solutions (Refs. 8-10) were
derived solely from the direct gravitational force of the

moon. These estimates were truly determined from the

tracking data, for as seen in Table 5, the a priori assump-
tions were a magnitude larger than the final uncertainties.

With these estimates on GMe and GM_, an earth-moon
mass ratio can be determined as follows:

Table 22 shows the Ranger earth-moon mass ratios

compared to nominal and Mariner estimates.
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3. Impact point. During the Ranger flights, there has

been a significant difference between the ODP-predicted

and the station-observed impact time. This difference has

caused considerable reexamination of the JPL trajectory

program, the ODP, the mathematicalmode]s used within

these programs, and the physical system at the tracking
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Table22. Earth-moon mass ratio

Standard

Source Ratio deviation

Mariner II

Ranger VI

Ranger VII

Ranger VIII

Ranger IX

Mariner IV

81.3015

81.3036

81.3044

81.3034

81.3025

81.3015

"4-0.0034

±0.0023

±0.0026

-I-0.0018

-t-0.0040

-r-O.OO16

stations. No significant error sources have been found
which could account for the time difference. This led to

the hypothesis that the actual lunar elevation at the

impact point differed from the values that were shown
on the Lunar Charts (Refs. 12-14). The results of these

differences for each of the Ranger missions may be seen

in Tables 23 and 24. The sub-heading titled "JPL esti-

mate" and "Service estimate," which are under U. S. Army

Lunar Map and U. S. Air Force (ACIC) Lunar Charts

headings, refer to those used during the actual mission

(JPL estimate) and those evaluated after the flight by the

map personnel themselves, respectively. The differences

Table 23. Lunar radius comparison

Lunar elevation, km Difference in elevation, km

U.S. Army Lunar Map Service U.S. Air Force ACIC
Mission

Ranger VI

LAC 60

Ranger VII

LAC 76

Ranger VIII

LAC 60

Ran get IX

LAC 77

JPL

estlmale a

1738.9

1739.9

1739.2

1741.0

Service

estimate b

1743.2

1737.7

1741.6

1738.1

JPL

estimate _

1738.4

1737.9

1737.6

1739.9

Service

estimate d

1738.4

1738.1

1737.2

1737.4

Ranger flight

data

1735.3

1735.5

1735.2

1735.7

Ranger-Army

|Servlce orJPL)

7.9

--2.2

--6.4

--2.4

Ranger-ACIC

(Service or JPL)

--3.1

--2.6

--2.2

-- 1.7

abased on Ref. 12,

I_Based on 1964 control points and computed by Army Map Service.

rBased en Refs. 13-15 (all charts at scale of 1:1,000,000 with prebable error of 4- 1.9 km).

dBased en Bridged method from current control points.

Table 24. Lunar elevation results (Ranger impact point from center of gravityl

Mission

RongerVI

Ranger VII

Ranger VIII

RangerlX

Recorded

tmpacttime, a

GMT

09:24:31.86

( + 0.005 _)

1 3:25:48.80

(+ 0.005')

09:57:36.755

{ _+0.005 _1

14:08:19.998

( + O,O05Sl

Calculated

impact time, b

GMT

09:24:30.29

(_+0.15_1

1 3:25:47.66

{+__0.I 9" )

09:57:35.1 40

( + 0.08 _)

14:08:1 9.634

(___0.23 _)

• Recorded impact time cerrected for signal transit tlme.

AT =

recorded

minus

calculated

1.57

1.14

1.61 5

0.364

VN =

velocity

normal to

lunar

surface

1.80 km/s

2.35 km/s

1.76 km/s

2.41 km/s

VN X 2xT,

km

2.83

(+_0.3)

2.68

(+0.4)

2.84

(+_0.4)

0.877

(+0.4)

Radius of

moon to

match

recorded

impact

time, km

1735.3

(_+0.3)

1735.5

(+0.4)

1735.2

(+0.4)

1735._75

(_+0.4)

Best rad;us

R from Air

Force Lunar

Map, km

1738.4

1738.1

1737.2

1733.7

bODP calculated impact time based on the nominal lunar radius of 1738.09 km.

R(AaC
Lunar Map Latitude

minus of impact,

Ranger), deg

km

3.1 9.44

2.6 -- 1 0.70

2.2 2.717

1.7 -- 1 2.99

Longi-

tude of

impact,

deg

21.50

--20.67

24.617

357.64
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in elevation values shown in Table 24 are greater for

the Ranger IX than for the other missions. This greater

difference may be attributed to the uncertainty in the
lunar elevation in a crater that was not used in the initial

calibration as opposed to Maria area. It is significant to

note that all Ranger missions computed the lunar radius

to be 1735.2 ± 0.5 kin, as compared to 1740.1 _ 3.1 km
for U. S. Army Lunar Map Service and 1737.8 ± 0.6 km
for U. S. Air Force ACIC.

The best ODP estimate of the lunar latitude and longi-
tude of the Ranger IX impact point is -12.992 and

357.639 deg, respectively, which were obtained from the

postmaneuver data using premaneuver as a priori with

REM constraint. The preliminary values of the latitude

and longitude, based on analysis of Ranger IX lunar TV
photos using Air Force Lunar Charts, are -12.839 and

:357.625 deg. The differences in the Ranger impact point

as computed by JPL Orbit Determination Program and

the analysis of Ranger IX TV photos and Air Force Lunar

Charts are shown in Table 25. The uncertainty on the

values computed from the postmaneuver data using pre-

maneuver as a priori is bound by the selenocentric dis-

persion ellipse having a SMAA of 2.,_9 km and a SMIA

of 0..38 km (Table 10, column 5).

Table 25. Lunar impact location comparison

Orbit Difference

Impact TV photos and determination OD -- TV,
location ACIC

(OD) km

Latitude -- 12.839 deg -- 12.992 deg -- 4.61

Longitude 357.625 deg 357.639 deg 0.42

Elevation 1737.4 km 1735.7 km --4.2

Note: I deg _ 30 km on lunar surface.

H. Limitations and Future Plans

This section discusses the limitations of the Ranger IX

flight path analysis described in this report, predicts the

results realizable from the DSIF tracking data obtained
during the Ranger missions, and indicates some of the

plans for follow-on or "summary" analysis.

Two immediate areas of the follow-on analysis are the

statistical combination of the results from the Ranger

flights (in particular Rangers VI, VII, VIII, and IX), and

:Value obtained via letter from O. S. Jakulis, ACIC, St. Louis,

Missouri, 1 Nov. 1965 to W. Kirhofer, ]PL.

the development of a "next generation" ODP to eliminate

some of the shortcomings of the Single Precision ODP.

The next generation ODP is called the Double Precision

Orbit Determination Program (DPODP) and is described
in a series of articles presented in Volume III of the

JPL Space Programs Summaries commencing with issue
SPS _7-_8 (Ref. 16).

The additional capabilities incorporated into the

DPODP which are of interest for this postffight type of
analysis are summarized in Table 26. It is significant to

note that errors introduced during computations due to

interpolation and the buildup of roundoff error are the

major contributions of the two-way doppler weighting
sigma for the SPODP in Section II-C. This use of SPODP

versus DPODP means that the full potential of the DSIF

tracking data has not been realized in the Ranger analysis

to date. The two-way doppler weighting sigma (for one
sample/rain) can be reduced from 18 mm/s to less than

5 mm/s if the computing noise is made negligible com2

pared to the other error sources. The buildup of comput-

ing error acts as a low-frequency noise source. Such an

error usually is not detectable in plots of the doppler

residuals such as shown in Figs. 8-18. These plots tend

to illustrate only the high-frequency noise sources.

In addition to the computing noise, other numerical

limitations exist in the analysis. Their existence is illus-

trated by the fact that certain constraints hold only to a

limited precision. Examples include the physical constant

solutions and the spacecraft position at midcourse maneu-

ver epoch.

The physical constant solutions obtained from using
the results of premaneuver data as a priori information

when processing postmaneuver data should be identical
to the physical constant solutions obtained when using

the results of postmaneuver as a priori information when

processing premaneuver data, in that both orbits use the

same set of data, but in a different order. Table 8 com-

pares the physical constant solutions from these two

orbits. Although the standard deviation of each physical
constant shown in Table 5 exceeds the discrepancy be-

tween the two solutions, it is still clear that numerical

difficulties do exist. For example, ±GM¢ = 0.05 km'Vs -_is

a variation in the 6th digit where a variation in the

8th digit may be expected due to roundoff, in that al-

though the same computations are performed, they are

accomplished in a different sequence for the two solutions.

Notice that ±GM_ is overshadowed by the _o_ = 0.27
for this analysis, but it will not be acceptable for the

summary analysis, which should yield _;_ = 0.02.
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Table26. Limitationsof Ranger analysis which will be overcome with the "next generation" ODP

Limitation of ODP used for the Ranger analysis to date Characteristics of "next generation" ODP

1. Trajectory and most other computations are in single precision. Errors are

introduced during computations due to interpolation and the buildup of

roundoff error, which are the main contributions to the data weighting

sigma, e.g., computing noise contributed 0.012 m/s out of a total station

weighting sigma of 0.013 m/s for two-way doppler near lunar encounter

(for a DSIF station with a rubidium frequency standard).

2. A fixed empirical correction is applied for tropospheric effects. Iono-

spheric effects are ignored, but could appear as an "inward" displace-

ment for o dayllght tracking pass.

3. Certain operations must be carried out external to the ODP. This some-

times makes an exact iterative solution cumbersome and impractical.

These external operations include:

a. The application of the GM_, GM¢, and REId constraints (maintains the

"calculated" period consistent with the "observed" period of the

moon). _

b. Veloclty increments due to the mldcourse maneuver (and the spring

separation of the spacecraft from the launch vehicle when appllcable)

are not automatically "solved for" and the ODP does not properly

constrain the spacecraft position at these maneuver points.

4. Size of solution vector is llmlted to 20 parameters. As an example, nine-

teen parameters were used for the Ranger IX analysis, which did not

include the maneuver velocity increments in the solution vector.

5. Eckert's latest corrections on the transformation of coordinates were

not included (Ref. 17).

6. Wandering of the polar axis is not included in the model.

1. Double precision will be used throughout. The computing program will

be formulated and the traiectary integration step size can be chosen to

ensure that computing noise is a minor contributor to the data weighting

sigma.

2. Ionospheric corrections will be applied and a more sophisticated model

will be incorporated for the troposphere.

3. Maneuver velodty increments will be added to the solution vector and

the necessary constraints will be incorporated in the ODP. Tracking data

from injection to lunar impact can be processed in a single run as

opposed to the premaneuver and pastmoneuver segments that were

treated separately for this report.

4. Size of solution vector will be nominally 50 parameters, but will vary

depending on nature of run. This will allow the inclusion of added

parameters mentioned under item 3.

5. The ephemeris tapes will be updated and should result in a smoother

fit of premaneuver data with postmaneuver data.

6. Polar motion will be in the model and should improve the consistency

of station location solutions.

_The lunar ephemeris is an _nput to the ODP, and the "observed" angular position of the moon with respect to the earth is fixed, independent of the GM_ , GM¢ , and REId

solutions.

The discrepancies in spacecraft position at the mid-

course maneuver epoch are shown in Table 18, in which,

for example, the spacecraft is displaced 0.34 km in the

Z direction above what the magnitude of the maneuver
would indicate. The current ODP constrains these posi-

tions statistically through the application of an a priori
covariance matrix, but does not include a physical con-

straint. The constraint among GMe, GMc, and REM is

applied as a side condition (Section II-F-2) after the ODP

processed the postmaneuver data using the results of the

premaneuver data as a priori information. That is, the

constraint is not applied in the iterative process, but only

applied after the orbit has converged without recognizing
the constraint.

Although the effective weighting scheme employed for

this analysis compensates for model inadequacies, this
method is not the most effective way to handle the prob-

lem. Certain model errors may be known to exist, but

models cannot be effectively modeled with the present
estimates. This ineffectiveness of modeling usually exists

52

because of practical reasons, in that the number of param-

eters required in the solution vector would be unreason-

able. Work is presently underway at JPL to mechanize an
estimator that more properly accounts for these types of

model errors or "process noise." In addition to compu-

tational noise, model errors may take the form of forces

that are not accounted for, such as:

<i>

<2)

Unbalanced attitude control forces (not pure cou-

ples, i.e., they cause a translational acceleration of

the spacecraft center of gravity).

Varying solar pressure force (either because the

spacecraft presents a variable effective area to the

sun or the sun expells a variable photon flux).

<3)

(4)

Incorrect ephemerides.

An inadequate model for the correction that must

be applied to the tracking data, such as refraction
due to the earth atmosphere (tropospheric and

ionospheric), as well as the effects of space plasma.

JPL TECHNICAL REPORT 32-767



Even though the effects of the attitude control system,

varying solar pressure, and space plasma are significant

items for planetary missions such as Mariner II (Venus)

and Mariner IV (Mars) flights, they are of minor concern
for a lunar mission such as Ranger IX. However, these

effects should be kept in mind when comparing the
Mariner II and Mariner IV GM_ solutions to the solutions

obtained from the Ranger missions shown in Fig. 21. As

an example, the Mariner II attitude control forces that

existed during the flight are rather ill-defined. A solution

of GM_ using cruise data and assuming no attitude con-

trol forces differed by 0.2 km3/s 2 from a solution obtained

when a "reasonable" attitude control force-time history
was assumed.

The expected effects on observed range due to the
ionosphere at the L-band are illustrated in Fig. 22. The

DSIF two-way doppler is really the range difference
accumulated over a fixed time interval and, as such, the

slope of the curve shown in Fig. 22 is a measure of

the two-way doppler error caused by the ionosphere. The

"night time" curve is essentially flat for elevation angles

greater than 30 deg. For Ranger IX, a nominal s DSS 12

pass ran from 1:00 to 10:00 a.m. local time with a maxi-

mum elevation angle (ym,x) of 30 deg, while for DSS 41,

the pass ran from 23:45 p.m. to 11:45 a.m. with "]/max =

85 deg. The omission of the ionosphere from the model

in the SPODP may cause errors of up to 10-20 m in a

direction normal to the earth spin axis (X1). However,

_Defined in Table 2, Section VI; also see Figs. 2, 3, and 4 for the
stereographic projection of the spacecraft tracks over the DSIF
stations.
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Fig. 22. Effect of ionosphere on range measurements

the tracking geometry is similar for all the Ranger flights,

thus the error is probably consistent from flight to flight.
The fact that the polar motion is not included in the ODP

will also cause error in X1 and longitude solutions.

The statistical combination of the Rangers VI-IX re-
sults should effect a factor of two improvement over the

individual results. At the same time, reasonable residual

(O - C) should be realized for each mission when the

data are refit using the physical constant "combined solu-

tions." However, the residuals thus far produced by these

combined solutions seem unrealistic. The suspected causes

include the earth-moon ephemerides and uncertainties

among the time relationships utilized in the ODP process.

Known discrepancies in the Improved Lunar Ephemeris
are pointed out by Dr. W. J. Eckert, et al., in Ref. 17.

These errors were incurred when sufficient accuracy was

not maintained in transforming from the original co-

ordinates computed in the Brown Lunar Theory to the

presently accepted coordinates. The discrepancies in

earth-moon distance and the lunar longitude that existed
at lunar encounter for Rangers IV-IX are shown in

Table 27. 9 For Ranger IX, the earth-moon distance had

a known error of 500 m. These errors have a relatively

high frequency and can change by 100 m over a day. The
lunar ephemeris errors affect the GMe and GM_ solutions

through the REAl constraint. If RE (the artificial earth

radius that scales the ephemeris) shifts to yield the cor-

rect earth-moon distance (a_), a 1-km error in a_ will

cause a 3.0 km3/s '-'shift in GAle + GM_ if the constraint

is honored. A 1-kin error in lunar longitude will tend to

shift the tracking station longitude solution by 16 m.

Although Ref. 17 deals with "known" lunar ephemeris er-

rors, the unknown errors may be as large as the known

errors, if not larger (although generally conceded to be

1 km, 1 a). The relatively small variation in GAle + GM_

_I'hese values are based on a letter from Dr. W. J. Eckert, dated
Mar. 7, 1966.

Table 27. Eckert's corrections to Brown's

Lunar Ephemeris

Encounter
Mission

date

Ranger VI 2 Feb. 1964

Ranger VH 31 July 1964

Ranger Vlll 20 Feb. 1965

Ranger IX 24 Mar. 1965

Correction _ meters

Earth-moon distance Lunar longitude

.A_¢ = --a_ A sin acA_! j
ae

244

410

1024

500

_64

--24

+63

--11
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of 0.8 km3/s 2 over the Rangers VI-IX flights indicates

that, if the lunar ephemeris errors are really that large,

the gravitational determinations of GM_ and GM_ are

strong enough to keep REM from representing the true
earth-moon distance, and the spacecraft positional dis-

continuities allowed at the midcourse epoch absorb the

errors.

The station location solutions are sensitive to the timing

relationships assumed in the orbit determination process.

Examples of this sensitivity are illustrated in Fig. 23. At
the start of a mission, either an error in station longitude

or an error in station time wilI cause a compensating

rotation of the spacecraft orbit in space. That is, even if

station time is assumed to be perfectly known, the station

longitude cannot be determined and vice versa. However,

if the station times are t_erfectly known, relative station

longitudes can be determined or, conversely, an error
between the two station clocks will cause an error in the

relative longitude. For the DSIF stations (]ocated

,_ ±35-deg ]atitude), a 1-s time error results in a 400-m

longitude error. As the spacecraft approaches the moon,

the orbit becomes determined in space (i.e., the right

ascension of the probe and the right ascension of the

moon) and the absolute station longitude is determined,

if the station time is known with respect to ephemeris

time (defining the location of the moon in space) and with

respect to Universal Time (defining the rotational orien-
tation of the earth). A more complete description of the

role these time systems play in the orbit determination

process and the likely errors among these time systems
are discussed in Ref. 18.
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The next generation ODP will be formulated and the

trajectory integration step size will be selected to ensure

that, during postflight analysis, computing noise will be

a minor contributor to the data weighting sigma. The

maneuver velocity increments will be added to the list of

"solve for" parameters. The equations that constrain the

spacecraft positions at maneuver epoch and that constrain
the GMe, GM_, and REMparameters will be added to the

regression model. Also, the atmospheric refraction model

will be improved by adding ionospheric effects and in-

creasing the sophistication of the tropospheric model. In
addition, the size of the solution vector will be increased

from its present limit of 20 parameters to allow the in-
clusion of the maneuver velocity increments, and of the

timing biases. These time biases include discrepancies

among the tracking stations, or between the adopted time

references for the tracking net and the timing systems

used to locate the celestial bodies in space (ephemeris

time) or the rotational orientation of the earth (Universal

Time). It is desirable to develop a model complete enough

so that the "fitters universe" will contain all the param-

eters necessary to represent the "real universe" data

(remove all trends from the residuals) and to associate

realistic statistics with the solution vector parameters.

Table 28 is a comparison of the physical constant sta-

tistics between the Ranger IX postflight analysis and

"ultimate" Ranger analysis where an improvement factor

of 8 is realized for GMe. The improvement factor of 15

for GM¢ is misleading because no two-way doppler was

obtained beyond 12 min before lunar impact in the case

of Ranger IX.

The slow relative motion of points on the earth crust

(which will not be included in the ODP model) may

limit the knowledge of station locations, but the effect of

the wandering of the polar axis with respect to the mean

pole of 1900-1905 will definitely be included and possibly

estimated. The major reduction in statistics is the result

of the improved model (i.e., double precision, built-in

constraints, midcourse maneuver model, improved re-

fraction model, improved lunar ephemeris, and an esti-

mator that more properly accounts for known model

discrepancies), as well as the statistical combination of

the independent solution.

III. Midcourse and Terminal Maneuver Analysis

A. Introduction

The function of the Maneuver Analysis Group (MAG)

of the Flight Path Analysis and Command Team was

fully described in the maneuver part of the report on

the flight path of Ranger VI (Ref. 8). Summarized briefly

here are the guidelines under which the exploration of
maneuver alternatives is carried out for both standard

and nonstandard flight sequences. The constraints and

restraints imposed are as follows.

(1) Mission.

(a) The impact location must have suitable light-

ing conditions at arrival. A precise quantitative

criteria for measuring these conditions is given

in Ref. 19, which predicts best results for re-

gions with a lighting angle of 50-80 deg.

(b) It is desirable to land in a Highland area not

far from the lunar equator to photograph a

generally different type region than that taken

by the previous Ranger missions.

(c) If no suitable impact location can be achieved,

it is desirable to maximize camera coverage

Table 28. Physical constant statistics: comparison between this analysis and that ultimately

realizable with DSIF tracking data from Ranger mission

Physical constant

GM_

GM¢

Station Iocatlons b

X1 (outward radial distance normal to the earth spin axis)

Xz. -- X:_: _ (difference in longitude between two stations}

Standard deviation

Ranger IX analysis"

0.6 km3/s = z (2.5 X l0 -e) GM@

0.3 km3/s = _ (30 X 10 _) GM_

23 m

15m

"Summary" analysis i

0.2 km_/s 2 _ (0.5 'X 10 e)GM$

0.02 km3/s z z (4 X 10 e) GM¢

I-5 m

I-5 m

aCom bines data from Rangers VI-IX.

bThe current analysis quotes results for DSS 12 and ignores the effect of the ionosphere. The maiorlty of the DSS 12 doppler were obtained at night when Ionospheric

effects were at a minimum.
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of previously unphotographed portions of the

moon with a west-side flyby.

(2) Spacecraft and geometrical.

(a) The magnitude of the corrective maneuver
cannot exceed the maximum available.

(b) The earth-probe-near limb of the moon angle
must not fall below 15 deg in order to main-
tain earth-lock.

(c) It is desirable that the flight time be adjusted
so that the automatic preset timer on board

the spacecraft will activate the fully scanned
cameras no later than 5 rain and no earlier

than 45 rain prior to impact.

(d) The angle that the roll axis of the spacecraft

makes with the probe-earth line should not be

less than 40 deg during the entire midcourse

maneuver sequence. Violation of this constraint

may or may not result in loss of telemetry

during this critical time. Coordination with

the Spacecraft Performance Analysis and Com-

mand Team (SPACT) is required in flight to
determine the severity of the loss, if any,
should the null cone be entered. In the event

that (c) and (d) may not be simultaneously
attained, the tinter takes preference over the

telemetry.

(e) It is desirable that both the midcourse and

terminal phases occur well within a Gold-

stone (DSS-12) viewing period.

(f) In the terminal maneuver sequence, the sec-

ond pitch turn may not be less than -47 deg.

In addition, it may not be greater than +55

deg if accurate roll stabilization is required.

Figure 24 shows several of these constraints mapped

onto the B-plane.

If telemetry indicates that the turns being executed

are significantly different from those commanded, the

MAG is able to evaluate in real time, during the execu-

tion of the midcourse maneuver sequence, the conse-

quence of any roll and pitch (with some assumed ve-

locity magnitude increment). The evaluation, using linear

analysis, estimates target parameters for the maneuver

being performed and weighs these against the target

parameters for the trajectory with no midcourse per-

turbation. In carrying out the evaluation, a representa-

tive from the JPL Space Sciences Division is consulted
before the recommendation is made as to whether or not

the maneuver is to be inhibited and the spacecraft re-

turned to its cruise mode by sending real-time command

(RTC) 8.

The investigation as to the most desired terminal
maneuver can be broken into four main possibilities:

(1) The nominal terminal maneuver, which aligns the

primary optical axis of the TV subsystem along
the velocity vector at the point of impact by per-

forming in sequence a pitch, a yaw, and a second

pitch.

(2) The optimum terminal maneuver, which seeks to

make the optimum trade-off between camera
smear due to misalignment between the cameras

and the velocity and the viewing geometry.

(3) A restricted maneuver, which pitches the space-
craft an amount equaling only the algebraic sum

of the first and second pitch computed in (1) above,

thus increasing reliability over (1) and (2) while

reducing the smear of (4).

(4) No terminal maneuver at all, which further in-
creases reliability.

The constraints on the midcourse maneuver mentioned

in the preceding sections also apply here in choosing
the proper terminal maneuver. Figures 25 and 26 depict

the midcourse and the terminal turning sequences, re-

spectively.

B. Inflight Maneuver Considerations

The primary site considered as a destination for

Ranger IX for the March 21, 1965 launch was the crater

Alphonsus. In flight, the particular location of 13.0-deg
south latitude and 2.5-deg west longitude was chosen to

provide the desired camera coverage of the crater rim
and the central peak, while having a fairly low proba-

bility of impacting in the shadow of the central peak.

The first orbit computation early in the mission made

it clear that the selected impact point could be achieved

with much less than the total 60 m/s capability of the

midcourse motor, performing the midcourse maneuver

at either the first (L + 17 h) or second (L + 89 h) Gold-

stone pass. Analysis revealed that the expected disper-
sions at the target due to midcourse execution errors

did not change appreciably by performing the midcourse
maneuver on the second Goldstone pass. The additional

tracking data available by waiting for a second Gold-

stone pass would result in a decrease in the orbit uncer-
tainties, besides possibly uncovering any obscure tracking
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Fig. 25. Ranger IX midcourse maneuver

Fig. 26. Ranger IX terminal maneuver
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data discrepancies. Because of the extreme accuracy re-
quired for the selected target and since no other factors

considered indicated a degradation in final results, the
decision was reached to make the midcourse maneuver

on the second Goldstone pass.

Table 29. Maneuver target conditions

B .RT, B .1"r,
Condition

km km

Aiming point at launch

Premaneuver orbit

Desired arrival point

Correction required

-- 299

-- 450

413

863

Tfr &

h

• From injection.

--320 64.30

1628 64.62

1557 64.31

--71 0.31

Table 29 shows the estimate of the arrival parameters

of the pre-midcourse orbit, the target parameters of

launch, the desired impact parameters prior to mid-

course, and the required change in the terminal condi-

tions. The target point at launch differs by 1989 km from

the target point at midcourse. The difference is that the

target point at launch is chosen to optimize the proba-

bility of impacting in the visible lighted portion of the

moon should a spacecraft malfunction preclude a mid-

course maneuver, while the target point at midcourse is

chosen by the criterion outlined preyiously. The ellipses

shown in Fig. 27 center on the estimate of the target
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Fig. 27. Capability ellipse of target parameters

16 and 40 h after injection

parameters from the nominal pre-midcourse orbit and

describe the total range of the ability to alter these

parameters with the 60 m/s capability of the midcourse

rocket, performing the maneuver at 16 and 40 h after

injection.

A summary of statistics of dispersion at the target for

the maneuver required is given in Table 80. Listed are the

1-_ values for the semimajor and semiminor axes of
the dispersion ellipse in the B-plane along with the

uncertainty in time of flight. These quantities are given

as contributed by orbit determination uncertainties,

maneuver execution uncertainties, and the combined
contribution.

Table 30. Expected target dispersions from orbit
determination and midcourse maneuver

execution errors

1-_r Semimalor Semimlnor

axis, axis,km km

Orbit determination 9.2 4.5

Maneuver execution 10.2 6.7

Combined 13.1 9.0

Flight time Orientation

uncer_alnly, angle, a

s deg

3.1 --70.7

6.5 67.2

7.2 89.4

*From +T ax;s to -I-R.

The flight time of Ranger IX was to have been ad-

justed so that impact would occur 80 min after the

back-up clock turned on the F channel cameras. The

maneuver to achieve the impact point and the desired

flight time, however, did violate the nominal antenna
constraint angle of 40 deg. Because of the particular

rotations to be performed by the spacecraft, the number
of channels and the time spent by each in the antenna

nulls could be reduced by modifying the maneuver to
yield different flight times. Several maneuvers for vary-

ing arrival times were computed; each was examined in

detail by the SPACT for expected telemetry loss.

The overall analysis determined that longer flight
times would result in:

(1) Less serious loss of telemetry (worst loss occurred

for a flight time with impact occurring about

25 min after clock turn-on).

(2) Smaller dispersions at the target due to maneuver
execution errors.

(8) Longer 'IV running times.
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To realize the smaller dispersions at the target and to

improve the telemetry recovery, a longer flight time was
selected for which the back-up clock would turn on the

F channel TV at 45 rain prior to impact. This TV run-

ning time was considered as a reasonable upper limit

from a reliability standpoint.

Once the terminal maneuver was initiated, the back-up

clock could be inhibited from turning on the TV at

impact minus 45 min. This delay would leave two
methods for TV turn-on at the more desirable time of

impact minus 17 to 20 min:

(1) Using the clock in the central computer and se-

quencer (started at initiation of the terminal ma-
neuver.

(2) Using a real-time command (No. 7).

The flight time from injection to impact was to be

reduced by 0.309 h from 64.618 to 64.809 h.

Approximately 8 h prior to the initiation of the mid-

course maneuver at 09:04:00 GMT, the final computation

was made, using the latest determination of the orbit.

The resulting required maneuver parameters are entered
in Table 81.

Table 31. Commanded midcourse maneuver

Parameter Magnitude Duration, s Initiated at GMT

Roll turn --27.41 deg 126 12:03:46

Pitch turn 127.96 deg 587 12:13:09

Velocity increment 18.15 m/$ 30 12:30:09

An effort to further reduce the expected error at the

target was made by employing an operational scheme

designed to minimize the effects of the known errors

evaluated in near real-time prior to executing the ma-
neuver. Once the three commands of the maneuver have

been computed, encoded, and entered in the register of

the spacecraft, there remains one control parameter with

which to try to minimize the effects of known errors.

This parameter is the real-time command 4, which

initiates the midcourse maneuver sequence. By selective

timing of the initiation of the maneuver, the largest con-
tributor to the maneuver execution errors, the pointing

error caused by the roll limit cycle, 1° may be reduced.

'°G. D. Pace, "Ranger Block III Midcourse Execution Capabilities,"
Oct. 10, 1968 (internal communication).

6O

Furthermore, other error sources, such as resolution

errors, may be compensated for, as well as taking into
account a more recent orbit determination that was not

available at the time of the maneuver computation. With

linear mapping and with compensation for the resolu-
tion errors and the current orbit determination solution,

the effect of the roll limit cycle on the target parameters

was plotted as the cycle evolved in time (Fig. 28). Using
this plot and a real-time computer verification/_ the
time to transmit RTC-4 was chosen to minimize the

expected error at the target. This time was selected to be

12:03:00 GMT. This real-time operational scheme re-

quired close cooperation between the MAG, the FPAC

director, the operations director, and the cognizant engi-
neer for attitude control.

Well before the maneuver was to be executed, con-

sideration was given to the possibility of stopping the

maneuver sequence with RTC-8. This command inter-

rupts the maneuver and returns the spacecraft to its
cruise mode attitude, if a malfunction should occur dur-

ing the turning sequence of the midcourse maneuver,
This decision of whether or not to halt the maneuver is

a particularly difficult one to make in real time because

once the maneuver is stopped, a period of 10,000 s must

elapse before a second attempt is undertaken. This delay,

due to the recycling period, presents the possible prob-

lem of having to perform the maneuver over an overseas

station with the possibility that the same malfunction of

the previous attempt might occur in the second attempt.

Furthermore, the delay decreases the capability of the
midcourse motor.

Taking these considerations into account, the MAG

was then prepared to evaluate, in real time, the direct

telemetry readings on the duration and polarity of the

turns, assuming the correct motor burn. Fortunately,

such preparation was never used, since the measurements,

observed in real time, indicated that the commanded

maneuver was performed with the correct polarities and,

within the accuracy of these measurements, was of the

exact duration. This measurement coupled with the real-

time doppler reduction (discussed elsewhere in this re-

port) gave almost instant verification that the maneuver

had been executed correctly.

After subsequent tracking and determination of the

postmaneuver orbit showed that the correction to the tra-

jectory was indeed very close to that desired, considera-
tion was given to performing a terminal orienting

"D. W. Curkendall, "A Technique for Reducing the Ranger Mid-
course Execution Errors," JPL internal document, June 1964.
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maneuver. Prior to computing a terminal maneuver, the

best estimate of the impact parameters was as follows:

(1) Latitude of impact -- 12.88 deg South.

(2) Longitude of impact --= 2.38 deg West.

(3) GMT of impact = 24 day 3 mo 65 yr 14 h 08 min
20 s.

(4) Automatic camera turn-on = 24 day 3 mo 65 yr
18 h 23 min 39 s.

Figure 29 depicts the impact geometry with the cam-

eras in the cruise mode orientation. The e vector repre-

sents the central pointing direction of the four P cameras.

Vectors A and B represent the pointing directions for

the 25- and 8.4-deg field of view F cameras, respectively.

The nominal terminal maneuver aligned the C vector

with the impact velocity vector ¥. In the cruise mode,

the C vector was 18.3 deg from the velocity vector, and

with the path angle of 64.9 deg, an impact velocity o_

2.62 km/s, and a shutter speed of 2 ms, the resultant

blurring due to camera motion was 2.2 m. That is, the
center of the field of view at the time that the shutter

closed would be observing a point on the surface 2.2 m
away from the point viewed at the time that the shutter

opened.

Evaluation of the four main terminal maneuver con-

siderations (see subsection A) revealed that the nominal

terminal maneuver, aligning the camera reference direc-

tion with the impact velocity vector, not only minimized

the image motion in the pictures but also resulted in a

most desirable coverage on areas of scientific interest of

Alphonsus. These facts coupled with a perfectly func-

tioning spacecraft led to the decision to perform the
nominal terminal maneuver.

C. Comparison of Commanded and Actual Maneuver

This section examines quantitatively the midcourse

maneuver execution errors in terms of effective pitch,

yaw pointing, and midcourse motor shutoff errors, and
the uncertainties associated with the estimates of these

errors.

TO EARTH

V 64.9*
74.9*

Fig. 29. No terminal maneuver approach geometry

10.2 °

TO SUN
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Using the estimate of the executed maneuver obtained

from Section II-F-2, the estimated errors may be sum-
marized as follows:

(1) Estimated error in yaw: 0.42 mrad or 0.024 deg.

(2) Estimated error in pitch: -2.22 mrad or -0.127

deg.

(3) Estimated error in velocity magnitude: 0.002 m/s.

Mapping these errors to the target results in a miss of

5.8 km in B • liT, 4.3 km in B • TT, and 3 s in time of

flight. The estimated errors compare with the expected

standard deviation for the maneuver performed as fol-
lows:

Error Standard deviation Uncertainty
of estimate

1-_y_ = 5.85 mrad (0.835 deg) 7.50 mrad

1-_pitch = 3.57 mrad (0.205 deg) 2.50 mrad

1-_,,el _g. = 0.077 m/s 0.080 m/s

Some of the errors involved in executing the maneuver

may be accounted for in postflight analysis. These errors

Table 32. Data used in computations

Source Roll, deg Pitch, deg Yaw, deg

Ideal turn --24.41 0 1 27.945 --

Resolution errors --0.017 --0.075 --

Limit cycle errors 0.11 8 --0.143 0,034

Ideal velodty magnitude = 18.1460 m/s.

Resolution velocity magnitude error _ --0.0115 m/s.

Vg (estimated mldcourse velocity vector m/s} = ( -- 10.57,18, -- 9.1028, -- 11.6052).

I 0.39agsO66E-8 --0.2405324E--8 O.a8255334E--8-1[Av] = 0.4444773E --8 --0.90854763E --8]

0.18617625E --7J

consist of the limit cycle errors in roll, pitch, and yaw,

and the resolution errors in the roll and pitch com-

manded and the magnitude of the velocity added. If

these identifiable error sources are removed, then the

resulting estimate in the errors is as follows:

Error Estimate

Estimated error in yaw with identi-
fiable error sources removed

Estimated error in pitch with identi-
fiable error sources removed

Estimated error in velocity

magnitude with identifiable
error sources removed

1.44 mrad

(0.082 deg)

- 6.03 mrad

( - 0.346 deg)

0.015 m/s

Table 32 shows the data used to arrive at all of the re-

suits, which are then summarized in Table 33.

The estimate of the velocity added at midcourse VE

and the covariance matrix of uncertainties A_, associated
with it were obtained from the best orbit determination.

In this estimate of V_:, tracking data alone were used; no

use was made of the spacecraft maneuver doppler data.

(Further details of this orbit appear elsewhere in this

report.) Communications by C. D. Pace 1° and R. E. Hill 1:

were used as the source for estimating the value of the

standard deviation for the pitch and yaw pointing error

and for the velocity magnitude error, while the estimates

for the resolution and the limit cycle errors were ob-

tained from a communication by T. Almaguer. _'_

"R. E. Hill, "'Ranger IX Attitude Control System Pointing Errors,"

Mar. 17, 1965 (internal communication).

'_T. Almaguer, "Ranger IX Attitude Control Flight Performance."

Apr. 13, 1965 (internal communication ).

Source

Estimated error

Standard deviation of

expected errors

Estimated error

Standard deviation of

expected errors

Standard deviation of

error in estimate

Table 33. Ranger IX maneuver execution errors estimates

Yow

mrad deg

0.42 0.024

5.85 0.335

1.44 0.082

4.08 0.234

7.50 0.430

ratio to

standard

deviation

0.07

0.35

Pitch

mrad deg

--2.22 --0.127

3.57 0.205

--6.03 --0.346

2.96 0.170

2.50 0.143

ratio to

standard

deviation

0.62

2.04

Velocity magnitude

ratio to

m/s standard

deviation

0.002 0.03

0.077

0.01 5 0.21

0.075

0.080

Remarks

All error sources

included

All identifiable error

sources removed

Applicable to both sets

of results
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D. Evaluationof TerminalManeuverPerformance

By analyzing the photographs of Ranger IX, it was

determined that the pointing error in the terminal ma-

neuver was approximately 0.65 deg. It is impossible,

however, to identify the contribution of the individual
error sources.

IV. Ranger IX Trajectory

A. Launch Phase

The Ranger IX spacecraft was launched from the Air

Force Eastern Test Range (AFETR) at Cape Kennedy,

Florida, on Sunday, 21 March, 1965, using an Atlas D�

Agena B boost vehicle. Launch occurred at 21:37:02:455
GMT with an inertial launch azimuth of 93.6 deg East

of North. After liftoff, the booster rolled to an azimuth of

94.3 deg and performed a programmed pitch maneuver
until booster cutoff. During sustainer and vernier stages,

adjustments in vehicle attitude and engine cutoff times

were commanded, as required, by the ground guidance

computer to adjust the altitude and velocity of the Atlas

vernier engine cutoff.

After Atlas/Agena separation, there was a short coast

period, followed by the first ignition of the Agena en-

gine. At a preset value of sensed velocity increase, the

Agena engine was cut off. At this time, the Agena/

spacecraft combination was coasting in a nearly circular

parking orbit and in a southeasterly direction at an alti-

tude of 187 km and an inertial speed of 7.80 km/s.

After a parking orbit coast time of 2.97 min as deter-

mined by the ground guidance computer and transmitted

to the Agena during the Atlas vernier stage, a second

ignition of the Agena engine occurred. After 86 s, the

Agena engine was cut off, and the Agena/spacecraft
combination was in a nominal earth-moon transfer orbit.

The launch phase ascent trajectory profile is illustrated

in Fig. 30, and a sequence of events from launch to

acquisition of the earth by the spacecraft is shown in

Fig. 31.

B. Premaneuver Cruise Phase

Injection (second Agena cutoff) occurred at 21:49:48

GMT over the Atlantic Ocean at a geocentric latitude

VERNIER ENGINE
CUTOFF

,aGENXl CUTOFF

,4GENA IGNITION

SUSTAIN ER ENGINE

200

2000

IOOO

FIRST AGEN,4
IGNITION

BOOSTER
ENGINE CUTOFF

3000

SECOND ,4GENA 4ooc
CUTOFF (INdECTION)

ASCENSION ISLAND 500_

BURN
COAST 600(

64

RANGE, nm

Fig. 30. Ascent trajectory profile
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4b

and longitude of 20.53 and 316.68 deg, respectively. The

Agena/spacecraft combination was at an altitude of

197 kin, and was traveling at an inertial speed of

10.967 km/s. At 35 s after injection, the Agena/spacecraft

combination entered the earth's shadow. The Agena sep-

arated from the spacecraft 2 rain, 38 s after injection,

performed a programmed yaw maneuver, and ignited

its retrorocket. The retrorocket impulse was designed to

eliminate interference with the spacecraft operation and

reduce the chance of impact of the Agena with the moon.

Tracking data indicated that the Agena passed the upper

trailing edge of the moon at an altitude of 5358 km

about 5 h after the impact of Ranger IX.

Ranger IX left the earth's shadow 34 min 19 s after

iniection for a total shadow duration of 33 min, 44 s.

Sun acquisition occurred 57 min 42 s after injection.

Within an hour after injection, the spacecraft was reced-

ing from the earth in almost a radial direction with

decreasing speed. This reduced the geocentric angular

rate of the spacecraft (in inertial coordinates) until, at

1.5 h after injection, the angular rate of the earth rota-

tion exceeded that of the spacecraft. This caused the

earth track of the spacecraft (Fig. 82) to reverse its direc-

tion from increasing to decreasing earth longitude. The

spacecraft acquired the earth 8 h, 22 min, 2 s after in-

jection, thus entering the designed cruise mode.

Tracking data gathered and analyzed prior to the mid-

course maneuver indicated that, without a correction,

impact of the spacecraft with the moon would occur at

518 km from the desired aiming point and at a seleno-

centric latitude and longitude of 4.1 and 857.7 deg, re-

spectively. The transit time from injection would then
have been 64.62 h.

Plots of geocentric distance and inertial speed for

Ranger IX as well as earth-probe-sun, sun-probe-moon,

and earth-probe-moon angles as a function of time from

launch to impact are presented in Figs. 83-85.

C. Midcourse Maneuver Phase

In order to alter the trajectory to ensure impact a

selected aiming point at a selenographic latitude of

-13 deg and longitude of -2.5 deg, midcourse ma-

neuver calculations indicated a requirement of 18.15 m/s

increment of velocity (60.09-m/s maximum capability).
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allow the TV camera backup turn-on clock to be utilized

as designed. To ensure proper alignment of the thrust
direction of the midcourse motor for a burn, a -27.41-

deg roll turn and a 127.96-deg pitch turn were required.
The midcourse motor was ignited at 12:30:08 on 23 March

1965 GMT, at which time the spacecraft was at a geo-

centric distance of 291,014 km and traveling with an
inertial speed of 1.308 km/s relative to earth. At the end

of a 81-s duration burn of the midcourse motor, the geo-

centric distance had increased to 291,054 km and the in-

ertial speed, relative to earth, had increased to 1.319 km/s.

Analog data received at the Goldstone tracking station

and relayed to the Space Flight Operations Facility

(SFOF) at JPL gave positive indication that the mid-
course maneuver and motor burn had been executed

accurately. This was further verified when the doppler

data was observed to be essentially the same as predicted.

Injection and encounter conditions for the pre-

midcourse orbit are given in Table 34. Terms used in
Table 34 are defined in Table 35.
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Table34. Ranger IX pre-midcourse orbit

Parameter Value

Initial conditions a

Parameter Value

Initial conditions a

Epoch

Earth fixed sphericals

R

8

V

'y

o"

Inertial Cartesian

x

Y

z

z

21 March 1965; 21:49:48 GMT

6572.4000 km

20.525267 deg

316.68299 deg

10.547199 km/s

1.6968853 deg

111.00130 deg

--1418.9946 km

5989.3706 km

2304.4179 km

--10.386731 km/s

--0.79878218 km/s

--3.4289787 km/s

aSee Table 35 for definition of terms.

bt-o" uncertainty of 3.087 s.

at-or uncertainty of 10.271 km.

dB. T and B" R are referenced to the true lunar equator (see Appendix A).

For Ranger IX work, the true lunar equator is used as the reference plane. If _ is

a unit vector in the lunar North direction, then T = SI X N and R = Sr X T,

Orbital elements

a

e

i

g_

392638.81 km

&98327464km

28.461476 deg

327.00969 deg

129.34037 deg

3.2915287 deg

Impact parameters

Impact epoch

Selenocentrlc latitude

Selenocentrlc Iongltude

Time of flight from iniectlon h

B_
B • Td
B • R d

24 March 1965; 14:26:54GMT

4.14 deg

357.73 deg

64.62 h

1690 km

1629 km

--451 km

Parameter Definition (earth as central body)

x, y, z

Table 35. Definition of terms

Probe radius distance, km

Probe geocentric latltude, deg

Probe East Iongltude, deg

Probe earth-flxed velocity, km/s

Path angle of the probe earth:flxed velocity vector with

respect to the local horizontal, deg

Azimuth angle of the probe earth-flxed velocity vector

measured East of true North, deg

Vernal equinox Cartesian coordinates in a geocentric

equatorial system. The origin is the center of the cen-

tral body. The principal direction {x) is the vernal

equinox direction of date, the principal plane (x, y) is

Parameter Definition (earth as central body)

x t y, z

(contd)

o

e

i

(d

the earth equatorial plane of date, and z is along the

direction of the earth spin axis of date, km

First time derivatives of x, y, and z, respectively, i.e.,

Cartesian components of the probe space-fixed veloc-

ity vector, km/s

Semimajor axis, km

Eccentricity

Inclination, deg

Longitude of the ascending node, deg

Argument of pericenler, deg

True anomaly, deg

D. Post-midcourse Phase

Following the midcourse maneuver, the spacecraft

reacquired the sun and earth, thus returning to the

cruise mode. At about 58 h from injection and at a geo-

centric distance of 373,336 km, the spacecraft inertial

speed, relative to the earth, reached a minimum value

of 1.120 km/s. At this point, the spacecraft was about
35,625 km from the lunar surface with an inertial speed
of 1.35 km/s relative to the moon. Because of the lunar

gravitational field, the spacecraft velocity then began to
increase.
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Post-midcourse tracking data was analyzed, and the

lunar encounter conditions of the trajectory were re-

solved with a high degree of accuracy. It was predicted

that lunar impact would occur at a selenocentric latitude

and longitude of -12.91 and -2.38 deg, respectively,

and that flight time from injection would be 64.52 h. The

encounter conditions along with the corresponding post-

midcourse initial conditions are presented in Table 86.

The geocentric spatial trace of the trajectory from injec-

tion to impact is illustrated in Fig. 36.

Table 36. Post-midcourse orbit of Ranger IX

Parameter Value

Post-midcourse conditions a

Epoch

Earth-fixed spherlcals

R

0

V

o"

Inertial Cartesian

x

Y

z

z

Orbital elements

a

e

i

lJ

23 March 1965; 12:30:38 GMT

291051.08 km

--25.382973 deg

257.32602 deg

18.994623 km/s

3.9208555 deg

270.15758 deg

-- 19401.815 km

--262237.06 km

--124763.90 km

0.13595686 km/s

--1.2091069 km/s

--0.50967493 km/s

339059.45 km

0.98571852 km

28.343391 deg

327.36181 deg

128.28277deg

167.17228 deg

Impact parameters

Impact epoch

Selenocentrlc latitude

Selenocentric longitude

Time of flight from injection b

Be
B • T a
B • Ra

24March 1965;14:08:20 GMT

--12.91 deg

357.62 deg

64.524 h

1614 km

1561 km

409km

SSee Table 35 far definition of terms.

bl-o" uncertainty of 0.67 $.

el-O" uncertainty of 9.99 kin.

dB, T and II * II are referenced to the true lunar equator (Appendix A). For

Ranger IX work, the true lunar equator is used as the reference plane. If N Is

a unit vector in the lunar North direction, then T = St X N and 11 = St X T.

E. Encounter Phase

During the encounter phase of Ranger IX, the space-

craft raced toward destruction through impact with the

lunar surface with increasing acceleration as the result

of the attraction of the lunar gravity field. At 1 h, 5 rain,

46 s before impact, while at a selenocentric altitude of

7211 km and at a speed, relative to the moon, of 1.606

km/s, the Ranger IX nominal terminal maneuver se-

quence was initiated. Thus, to align the reference direc-

tion of the camera along the velocity vector at impact,

the spacecraft pitched 5.20 deg, yawed -16.30 deg, and

pitched again -20.50 deg. At the completion of the sec-

ond pitch turn, 87 min 3 s before impact, the speed of

the probe had increased to 1.758 km/s and its altitude
was 4360 km.

At 18:49:38 on 24 March 1965 GMT, while at an alti-

tude of 2376 km above the lunar surface, full power on

Channels F and P was verified. Minutes later, at

14:08:19.999 GMT, Ranger IX crashed into the crater

Alphonsus at an impact speed of 2.671 km/s and at a

path angle of -64.9 deg. Impact of the spacecraft with

the moon had been in a direct motion along a hyperbolic

trajectory, the incoming asymptote direction being at an

angle of -5.59 deg to the lunar equator, and with the

orbit plane inclined 15.67 deg to the lunar equator.

The trace of the trajectory on the lunar surface from

injection to impact is given in Fig. 37, while the traces

of the lunar approach portions of the pre-midcourse and

post-midcourse orbits are illustrated in Fig. 88. The

probe geocentric distance and velocity are given in Figs.

89 and 40, respectively, for the last few hours of flight.

The selenocentric altitude and velocity are given in

Figs. 41 and 42. Figure 48 shows the earth-probe-sun,

sun-probe-moon, and earth-probe-moon angles for the

last hours of flight.

A study of the Ranger IX trajectory can be made by

examining the detailed trajectory printout (Appendixes B

and C). Appendix B contains the trajectory listing for the

pre-midcourse orbit from the initial epoch to the mid-

course epoch and a lunar impact printout. Appendix C

contains the trajectory listing for the post-midcourse orbit

from midcourse to lunar encounter. Appendix D, Table

D-l, is a key to the trajectory printout. Table D-2 con-

tains the definitions of the trajectory printed quantities•

Constants and conversion factors used in Ranger IX tra-

jectory computation are listed in Table D-8. The miss

parameter B, used to measure the miss distance for the

lunar trajectory, is defined in Appendix A.
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V. Analysis of Air Force Eastern Test Range

Tracking Data

A. Introduction

For the Ranger missions, the AFETR was responsible

for providing classical orbital elements for both the park-

ing and transfer orbits, and for providing initial acqui-

sition information to the DSIF tracking stations. These

calculations were performed at AFETR using Agena ve-

hicle tracking data obtained from the downrange AFETR

tracking stations. Results of these calculations were

transmitted to the ]PL SFOF in Pasadena. The acqui-

sition information was relayed to the DSIF stations, and

the initial orbital elements were used in the JPL orbital
calculations.

In addition to fulfilling these requirements, AFETR

transmitted tracking data obtained during the parking

orbit, transfer orbit, and Agena postretro orbit to' the

SFOF. The parking orbit data were very useful for de-

74
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Fig. 43. Angular relationships among bodies vs GMT

tecting nonstandard flight conditions, and the transfer
orbit data were used during flight operations to verify

the initial orbital estimates based on DSIF data. Agena

postretro data were important for verifying Agena retro-

firing, and were further used to establish the Agena

vehicle postretro orbit.

The Agena second stage was tracked continuously by
AFETR and NASA C-band radars from 21:40:12 to

22:44:'24 GMT on 21 March 1965. Tracking data in the

form of range, azimuth, and elevation were received at

JPL at the rate of 1 point/6 s with the exception of Twin

Falls Victory (TFV) ship data, which were received at

a rate of 1 point/3 s. Figure 44 shows the tracking cov-

erage and the elevation pattern for each of the stations.

B. Parking Orbit

Parking orbit data from the FPS-16 (modified) radar
at Bermuda from 21:40:12 to 21:48:12 GMT on 21 March

1965 and the FPQ-6 radar at Antigua from 21:43:48 to
21:48:18 GMT were received. Because of the short coast,

these data were not processed in real time.

In postflight analysis however, it was possible to ob-

tain a good two-station fit to the parking orbit, by using
data after 21:45:86 GMT. The amount of data-used and

quality are summarized in Table 37. Figures 45 and 46
show the observed minus computed residuals of range,

azimuth, and elevation from Antigua and Bermuda for
the two-station solution.
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Table 37. Ranger IX parking orbit data quality

Station/data Number of Standard Mean
points deviation

Bermuda

Range, m

Azimuth, deg

Elevation, deg

Antigua

Range, m

Azimuth, deg

Elevation, deg

17

17

17

27

27

27

4.0

0.016

0.011

5.0

0.004

0.012

3.0

0.0

0.0

0.9

0.0

0.0

Table 38. Ranger IX parking orbit solutions

Orbital AFETR real-time JPL ODP

parameter solution a solution b

Epoch = 3/21/65, GMT

Radius, km

Latitude, deg

Longitude, deg

Velocity, km/s

Path angle, deg

Azimuth, deg

$emtmajor axis, km

Eccentricity

Inclination, deg

Longitude of node, deg

Argument of perigee, deg

C3, km/s _

21:45:47.4

6564.0

25.510

299.615

7.374

0.111

103.702

6569.0

0.0019707

28.43595

327.0536

46.25868

-- 60.67

21:45:34

6562.0573

25.715587

298.69171

7.3754901

0.079806490

103.30741

6565.2094

0.0014104272

28.437604

327.06279

44.274442

--60.714076

aSolutlon from Antigua data.

bSolutlon from Antigua and Bermuda data.

Table 38 lists the spherical initial conditions and or-

bital elements from this solution along with the AFETR

orbit reported in real time. The agreement is quite close.

Argument of perigee differs by about 2 deg; however,

because the orbit is so nearly circular, this parameter

does not have too much significance.

C. Transfer Orbit

The preseparation data from the TFV ship were com-
bined with the postseparation data from the new FPQ-6
radar at Ascension Island for a two station fit of the

transfer orbit. The data were combined in this fashion

instead of fragmenting the orbit into a preseparation-

postseparation orbit in order to see ff a consistent two
station solution would be possible. The effect of spring

separation between the Agena second stage and the

Ranger IX spacecraft should be negligible, since

the Ascension data (Fig. 47) were taken immediately

after spring separation and because the Agena was more

massive than the spacecraft. Figure 48 shows the results

of such a solution, which includes the relocation of the

TFV ship by 10 km in longitude and 3 km in latitude.

Data were received from Ascension starting from
21:53:54 GMT on 21 March 1965 and from the TFV

ship from 21:48:40 to 21:57:05 GMT. Data before
21:49:48 GMT were considered to be taken during the

Agena second burn and were ignored. Two other orbits

were determined using data from Ascension and TFV

ship, exclusive of each other.

All three solutions were mapped to impact upon the

moon, and compared to an orbit obtained from AFETR

during real time as well as a spacecraft orbit determined

from DSIF tracking. This latter orbit was given a nom-

inal spring separation velocity of 0.5 m/s along the
velocity vector and taken out to impact. Figure 49 illus-

trates the B-plane points of impact from these various

orbits. The point labelled AFETR refers to the AFETR

orbit obtained in real time, the point labelled DSIF

refers to the orbit of the spacecraft, the point labelled

NOM refers to the Agena orbit obtained by decreasing

the spacecraft velocity 0.5 m/s along the velocity vector,

and the points labelled 2 STAT, SHIP, and ASCENSION
refer to a two-station fit using TFV ship and Ascension

data, a one-station fit using TFV ship data only, and a

one-station fit using Ascension data only, respectively.

The observed minus computed residuals from the latter
two cases are shown in Figs. 50--52. Table 39 summarizes
the orbital solutions from AFETR and the results from

the three ODP solutions. The amount and quality of the

data from Ascension and the TFV ship are tabulated in
Table 40.

The ]PL ODP solution, labelled "Ascension" in

Table 39, agrees quite closely with the real-time AFETR
solution, because both orbits used the Ascension data;

however, both disagree quite significantly with orbits

using DSIF data (Fig. 49). This discrepancy, which can-

not be attributed to spring separation, points out an

inconsistency between the DSIF data and the data from

the new FPQ-6 radar at Ascension. According to Ref. 20,

the data received from Ascension had been incorrectly

labelled in time by 0.050 s.

D. Postretro Orbit

Data received from AFETR during the postretro orbit

on 21 March, 1965 were from Ascension (data that ended

at 22:83:18 GMT), from the FPS-16 radar at Pretoria

(from 21:59:57 to 22:25:45 GMT), and from Carnarvon

(from 22:29:00 to 22:44:30 GMT).
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Table 39. Ranger IX transfer orbit solutions

Orbital parameter Orbit from AFETR Ascension data only Ship data only Two-station fit

Epoch = 3/21/65, GMT

Radius, km

Latitude, deg

Longitude, deg

Velocity, km/s

Path angle, dog

Azimuth, deg

Semlmajor axis, km

Eccentricity

Inclination, dog

Longitude of node, dog

Argument of perigee, deg

C_ km/s _

B, km

21:57:47.9

7649.0

20.964

352.836

9.708

23.081

120.023

381995.5

21:49:48

6572.0000

20.499784

316.74323

10.545706

1.7421114

111.02435

377480.12

21:49:48

6573.3752

20.507766

316.73947

10.545007

1.6676701

111.00232

382247.95

0.9828112

28.46928

326.9725

129.35650

--1.04

2945.5194

0.98260482

28.458760

327.00205

129.31997

--1.0559513

2837.0355

0.98281696

28.449807

327.04186

129.42375

--1.0427803

1976.9812

21:49:48

6572.5448

20.500327

316.73379

10.546625

1.7196632

111.00960

389254.63

0.98312923

28.449531

327.01518

129.34440

--1.0240100

1896.9244

Table 40. Ranger IX transfer orbit data quality

Station/data Number of Standard Mean
points deviation

Ascension

Range, m

Azimuth, dog

Elevation, deg

TFV ship

Range, m

Azimuth, deg

Elevation, deg

19

19

19

6.34 0,2

0.006 0.0

0.005 0.0

109

109

28.1 0.9

0.0219 0.0

109 0.0637 0.0160

E

O" -500
ri-

m

-I000
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°D

2 STATION (JPL)
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i
ASCEI_SION

Iooo

Fig. 49.

2oo0

B-TO, km

Transfer orbit impact points

3000

Station/data

Carnarvon

Range, m

Azimuth, deg

EJovatlon, deg

Pretorla

Range, m

Azimuth, dog

Elevation, deg

Carnarvon

Range, m

Azimuth, dog

Elevation, dog

Table 41. Postretro data quality

Number of paints

143

143

143

108

108

108

208

208

208

Single station

Standard deviation

6.0

0.013

0.013

6.0

0.04

0.01

6.0

0.01

0.01

Mean

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Three stations

Standard deviation

! 25.0

0.013

0.014

258.0

0.06

0.04

138.0

0.014

0.014

Mean

77.1

-- 0.08

0.0

78.8

--0.113

0.076

--45.0

0.081

0.040
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Fi 9. 50. Ascension Island transfer orbit residuals {Ascension data only)

Data from the FPQ-6 radars at Ascension and Carnar-
yon and the FPS-16 radar at Pretoria were received at

JPL at a rate of 1 point/6 s. These data were used in a

combined three-station fit to the Agena orbit.

The resultant solution produce observed minus com-

puted residuals in excess of 200 m from each of the

three stations (Figs. 53--55 are plots of these residuals),
and are to be contrasted with residuals obtained from

each station by itself (Figs. 56--64). Table 41 compares

the standard deviation and the mean from the three-

station fit with the standard deviation and the mean

from the single-station fit. Such discrepancy indicates

internal inconsistency between each of the three radars.

Reference 20 indicates an incorrect time tag from Pre-

toria of 0.550 s. The mistagging of the data causes the

sizeable range residuals of the Pretoria data, which can

be seen in Fig. 63. The point where the residuals cross

the zero axis is the point of closest approach of the

Agena with respect to Pretoria.
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Each of the single-station fit were mapped to the

B-plane. All three solutions showed a B-plane miss of

10,000 km, indicating that a retro-maneuver on the order

of 13 m/s had occurred. Figure 65 shows the B-plane

impact points determined using data referenced to the

B-plane from each station (Pretoria, Ascension Island,

and Camarvon). Table 42 lists the spherical conditions

and orbital elements from each of the three single-station
orbits.

E. Conclusions

The data received from AFETR were excellent as far

as the high-frequency noise was concerned (Tables 37

and 41), with 6 m being a typical value for the random

noise on range data. However, systematic errors due to

timing or possible biases (Ref. 21) in the received data

not accounted for caused difficulties in reducing the
data, and produced sizeable residuals. The latter should

not be interpreted as radar performance problems, but

-5O

E

d -loo

-150

-20(
o

)_CARNARVI N

o PRETORIA

I00
i

200

B'TO, km

Fig. 65. Postretro impact points

A_CENSION

300 400

should suggest that more attention be given to proper

handling of the data.

Vl. Deep Space Instrumentation Facility Tracking

of Ranger IX

A. introduction

The DSIF is primarily composed of various tracking

stations located around the earth in a configuration that

will supply complete tracking coverage for lunar and

planetary trajectories. The tracking stations are inter-

faced to the main control SFOF at JPL. The Deep Space

Stations names and locations employed in the Ranger IX
mission are given in Table 4:3. The AFETR is also inter-

faced to the SFOF at JPL. The names and locations of

the AFETR stations are presented in Section V of this

report. The AFETR is responsible for providing orbital

elements for the parking and transfer orbits, and for

providing initial acquisition information to the DSSs.

Table 44 shows the nominal view periods of the space-

craft to the DSS during the course of the mission. Rise

and set times (in GMT) refer to that time at which the

Table 43. DSIF station locations

Station Location

12 Goldstone, California

41 Woomera, Australia

51 Johannesburg, S. Africa

Geodetic

latitude,

deg

35.4 N

31.4 S

25.9 S

Astronomic

longitude,

deg

116.8 N

136.9 E

27.7 E

Table 42. Postretro conditions from single-station fit

Orbital parameter Carnarvon data only Pretoria data only Ascension data only

Epoch = 3/21/65, GMT

Radius, km

Latitude, deg

Longitude, deg

Velocity, km/s

Path angle, deg

Azimuth, deg

Semlmajor axis, km

Eccentricity

Inclination, deg

Longitude of node, deg

Argument of perigee, deg
C_ km/s 2

B, km

21:49:48

6568.6470

20.515497

316.76754

10.538111

1.8093555

111.02387

308927.22

0.97875705

28.469205

327.04823

129.15788

--1.2902736

10213.149

21:49:48

6567.5268

20.487987

316.78248

10.539124

1.8319404

111.03391

309136.70

0.97877556

28.456824

327.01145

t29.16895

--1.2893992

10331.734

2t:49:48

6567.9688

20.475994

316.78645

10.538447

1.8391181

111.03468

307847.92

0.97868543

28.448938

326.99851

129.17386

-- 1.2947972

10578.880
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Table44. Nominalviewperiodsa vs actual tracking at DSIF stations

Date

Mar. 21, 1965

Mar. 22, 1965

Mar. 23, 1965

Mar. 24, 1965

Station

51

41

12

41

51

12

41

51

12

41

Nominal

rlse_

GMT

22:00:42

No view within

4 deg of main beam

08:33:00

14:22:00

21:40:00

08:56:00

14:36:00

21:55:00

09:00:00

No view within

8 deg of main beam

Nominal

set#

GMT

09:01:00

17:14:00

02:22:00

09:45:00

17:43:00

02:37:00

09:05:00

14:08:21

(impact)

(Impact)

Nominal

view

period

11 h00m

00h00 m

08h41 m

12h00 '_

12h05 m

08;147 m

12h01 m

12h00 m

05h08 m

OOhO0 _

Acquisition

by

station, b GMT

22:01:00

23:00:00

08:24:00

13:35:00

21:37:00

08:57:00

14:08:00 c

21:45:00

09:13:00 c

t3:43:00

Loss of

signal by

station, GMT

09:05:00

01:42:00

17:17:00

03:22:00

10:04:00

17:44:00

03:20:00

10:16:00

14:08:21

(Impact)

13:58:00

Actual

view

period

1 lh04 m

02h42 _"

08h54 TM

13h53 m

12h27 m

08h47 m

13hl 2 m

12h31TM

041'55 m

00h15 m

IA nominal view period is calculated to include land mask and antenna limits such that the spacecraft remains in the main beam lwithln 0.5 deg or 3 dB of the center of maln

beam).

bActual view periods are from first good solld-recetver lock to loss of good solid-receiver lock.

=With squint looking feed.

spacecraft is at a 5-deg geometrical elevation angle.

Since the spacecraft signal can frequently be received

when the spacecraft is lower than 5 deg, it is possible

that acquisition of the spacecraft will occur before nom-
inal rise time and loss of signal after nominal set time.

The modes of operation of the DSIF are identified as

ground modes, which are defined in Table 45.

During Ranger IX mission, the DSS provided both

angular and doppler data throughout the trajectory. Both

data types were used during the early part of the mis-
sion; after sufficient doppler data bad been compiled, the

angular data were omitted from the orbit solutions.

Relatively large biases were seen in the early angular
data from DSS 51. These biases were mainly due to

angular correction model errors that, in turn, were
caused by equipment changes and RF feed realignment.
New correction coefficients are being evaluated and con-

tinuous efforts are being extended in this area. For the

postflight analysis, only two-way doppler data were used.

Plots of the doppler residuals for the premaneuver and

postmaneuver tracking are presented in Section II of

this report.

B. Transponder Tracking

1. Premaneuver phase. Initial acquisition of the space-

craft transponder was made by DSS 51 at 22:01:00 GMT

on March 21, 1965. The acquisition was made with the

104

Table 45. Ground station tracking modes"

Transmlt/recelve Antenna feed

GM-O b No receive (transmit only)

GM-1 One-way doppler (receive only}

GM-2 Two-way, one station (transmit/

receive)

GM-3 Two-way, two station

noncoherent (receive only)

GM-4 Two-way, two station coherent

(receive only with reference

signal from transmit station)

GM-5 Receive only (no doppler)

0 Not used

1 Horn feed and diplexer

combination (85-ft

diameter reflector)

2 Tracking feed and

diplexer combination

(85-ft diameter

reflector)

3 Acquisition antenna

4 Dipole (6-ft diameter

reflector)

5 Horn feed, no diplexer

(receive only) (85-ft

diameter reflector)

IThls ground mode (GM) description is used to define the station configuration.

The code is broken into two parts: the first defines the transmit/recelve mode and

the second the antenna feed configuration. I:or example: GM-2-1 = transmitting

to spacecraft and receiving two-way doppler, and horn feed and dlplexer.

bTelemetry will be available In all receive modes except GM-0.

ground transmitter on so that, when receiver lock was

established, two-way lock was also established.

At 22:14:44 GMT, DSS 51 switched the transmitter

exciter chain from a voltage-controlled oscillator (VCO)
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to a rubidium standard controlled frequency synthesizer.

Tests on Ranger VIII indicated that the two-way doppler

data taken using the synthesizer had less noise than

when a VCO was the frequency source. On Ranger IX,

the data noise increased when the synthesizer was used.

Upon analysis of this noise, it was decided at 22:86:06

GMT to return the station to VCO, and the noise level

did decrease. The station changed synthesizers and ob-

tained tracking data using the new unit from 22:55:15
to 23:12:10 GMT. This data also had excess noise. It was

requested that DSS 51 change the rubidium standards,

which would interrupt tracking momentarily. DSS 41

was requested at 28:00:00 GMT to maintain a two-way

mode on the spacecraft, which was 4 deg away from the
limit of the main beam.

DSS 51 reacquired two-way lock at 00:25:20 GMT on
March 22, 1965, the data noise had been reduced and

remained this way for the rest of the view period. There

was a time bias on the doppler data from 00:25:20 to

00:40:13 GMT due to changing of the rubidium stand-

ard; the data was corrected.

DSS 41 was not expected to be in a two-way mode

during the first pass, since the spacecraft trajectory was
never visible within the main beam of the antenna.

However, it did come within 4 deg of the main beam,

and two-station noncoherent data were received using

the acquisition aid with its wider beamwidth. Two-way

doppler data were obtained for approximately 20 min

before the spacecraft moved from the main-beam up-
link lock.

Telemetry event blips B-2-1 through B-2-4 observed

by DSS 51, starting at 22:87:01 GMT on March 21, 1965,

indicated that solar panel extension had occurred. At

22:40:01 GMT, a B-2-1 blip was observed, indicating

the start of the sun acquisition sequence.

After changing the rubidium standard and correcting

the time bias that leads WWV by 80 ms, DSS 51 con-

tinued to track the spacecraft in the two-way mode un-

til the beginning of DSS 12 view period at 08:45:00 GMT

on March 22, 1965. Tracking continued without any addi-

tional incidents until the maneuver phase on March 28,
1965.

2. Maneuver phase. The nearly perfect trajectory,
which the spacecraft obtained from the launch vehicle,

meant that only a minute portion of the mideourse

capability was needed for a midcourse maneuver at the

nominal time of launch plus 16 h. A decision was made

to postpone the maneuver until the second pass at

DSS 12, or until launch plus 39 h. This postponement

provided an opportunity to refine the orbit used for the

midcourse study with a better multi-station solution.

At 10:50:00 GMT on March 23, DSS 12 started trans-

mitting midcourse maneuver command sequence. At

11:85:00 GMT, DSS 12 transmitted the antenna change

over command, which switches the spacecraft back to

the low-gain omniantenna, and at 12:08:00 GMT, the
maneuver execute command was transmitted. At 12:80:09

GMT, after the programmed delay, an event blip was

observed, indicating midcourse motor ignition. This

event was immediately followed by an increase in re-

ceived doppler frequency, as predicted. The increase

continued until motor cutoff, and then the observed

doppler continued as predicted. A plot showing pre-

dicted doppler and observed doppler during the ma-

neuver period is shown in Fig. 66.

3. Postmaneuver phase. Following the maneuver, the

spacecraft reacquired the sun at 18:01:42 GMT on

March 28. At 18:26:00 GMT, DSS 12 started transmitting

the command sequence to switch the spacecraft back to

the high-gain antenna. Transponder tracking then con-
tinued in a normal manner with a minimum amount of

data being lost when transferring from one station to

another. At 11:54:00 GMT on March 24, DSS 12 began

transmitting a terminal maneuver command sequence.

107790 = '
I PREDICTED DOPPLER CURVE | |

107780 _WlTH MANEUVER_

,07770_ I _i _"" MOTO! SHUToFF_

Z : i:l ........./ j :
1077 I0 Ip !

107700 _ / MOTOR SHUTOFF: 12:50:40 GMToo.o. ,cu.w
107680 r,_ , [

10767G -'-''¢_"'_ I / _'_'--MOT01 IGNITION I

12:29:50 12:30:00 12:30:30 12:31:00

GMT, MAR 23, 1965

Fig. 66. Ranger IX two-way doppler shift
midcourse maneuver

12:31:30
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A terminal orientation maneuver sequence was con-

ducted to minimize the image motion in the pictures

and to obtain a more desirable coverage on areas of

scientific interest of the crater Alphonsus. At 11:58:00

GMT, the command for the terminal maneuver for the

first pitch duration began; at 13:02:84 GMT, the initia-

tion of terminal maneuver was transmitted to the space-
craft. The maneuver override command was unloaded

and the backup command that activates the TV subsys-

tem warmup was transmitted at 18:82:84 GMT. Subse-

quent event blips indicated that the spacecraft responded

properly. At 13:49:84 GMT, channel P video appeared

occurring approximately 0.5 s before channel F video;

full power was immediately obtained. DSS 12 reported

excellent photographs of the lunar surface until impact.

A summary of all commands transmitted to the space-

craft by the DSIF is given in Table 46.

4. Impact phase. Due to the trajectory of Ranger IX,

an unusual case was presented where DSS 41 might

observe lunar impact. A set of predictions was generated

indicating that the spacecraft would impact before it

was within the main beam of the DSS 41 antenna, which

was constrained by the 270-deg hour-angle limit.

A squint feed was installed at DSS 41, changing the

angle of the main lobe away from the central axis of

the paraboloid. This change was accomplished by moving
the feed so that the angle of illumination was changed.

DSS 41 acquired the spacecraft approximately 25 min

before impact, but dropped lock at 18:58:18 GMT when
the DSS 12 transmitter failed. The transmitter failure at

DSS 12 caused the loss of receiver lock at DSS 41 and

DSS 12. Recovery was rapid at DSS 12 with only 1-min

loss of tracking data. Due to the prime importance of

the TV data being recorded, the receiver operator swept

the receiver frequency over the beacon frequency with-

out putting the doppler system in a one-way mode. The

recovery of the last 10 min of data was not successful

due to temperature variations of the doppler frequency

being very unstable.

5. Determination of impact time. An experiment to

measure the exact time of lunar impact was conducted

at DSS 12. This experiment consisted of counting the

station's 1-MHz reference, using the one per minute

station time pulse as the start trigger of the counter and

the decaying spin modulation output as the stop trigger

of the counter. The spin modulation output (unfiltered

coherent AGC voltage) was precalibrated and postcali-

Table 46. Ground commands from DSIF to Ranger IX

Command a

RTC-O

RTC-2

RTC-3

RTC-O

RTC-O

SC-1

SC-2

SC-3

RTC-O

RTC-O

RTC-3

RTC-4

RTC-O

RTC-O

RTC-3

RTC-O

RTC-0

RTC-2

RTC-O

RTC-O

SC-4

SC-5

SC-6

RTC- 6

RTC-5

Unload RTC-8

Load RTC-7

Initiated,

Date/GMT

22/09:26:00

22/09:28:00

22/09:30:00

23/10:50:00

23/10:52:00

23/10:54:00

23/10:56:00

23/10:58:00

23/11:31:00

23/11:33:00

23/11:35:00

23/12:03:00

23/13:26:00

23/13:28:00

23/I 3:30:00

23/22:26:00

23/22:28:00

23/22:30:00

24/11:54:00

24/11:56:00

24/11:58:00

24/12:00:00

24/12:02:00

24/13:02:34

24/13:17:00

24/13:32:34

24/13:32:34

Telemetry

Varified, Station event blip
GMT recorded

at station

09:26:38 12 --

09:28:38 12 --

09:30:38 12 B-20

10:50:38 12 --

10:52:38 12 --

10:54:38 12 B-20

10:56:38 12 B-20

10:58:38 12 B-20

11:31:38 12 --

1 ! _33:38 12 --

11:35:38 12 B-20

12:03:38 12 B-20

13:26:38 12 --

13:28:38 12 --

13:30:38 12 B-20

22:26:38 41 --

22:28:38 41 --

22:38:00 41 B-20

11:54:38 1 2 --

11:56:38 12 --

11:58:38 12 B-20

12:00:38 i 2 B-20

12:02:38 12 B-20

13:03:12 12 B-20

13:17:38 12 B-20

-- 12 --

-- 12 --

• Real-tlme commands:

RTC-O = clear command.

RTC-2 -- antenna angle hinge coverrlde.
RTC-3 = antenna switch over.

RTC-4 = begin midcourse maneuver.

RTC-5 _ turn off TV subsystem, inhlbit TV backup timer, and backup telemetry

mode change.

RTC-6 = initiate terminal maneuver.

RTC-7 = backup turn-on TV subsystem.
RTC-8 = maneuver override.

Stored commands:

SC-I = mldcaurse maneuver roll duration.

SC-2 = midcourse maneuver pitch duration.

SC-3 = midcourse maneuver velocity increment.

SC-4 = terminal maneuver flrst-pltch duration.

SC-5 = terminal maneuver yaw duration.

SC-6 = terminal maneuver second-pltch duration,

brated to measure the receiver delay. Receiver delay

uncertainty was the limiting factor in the resolution of

the impact measurement. Analysis showed the one-sigma

uncertainty to be 185 es. Impact (loss of carrier) was

recorded at 14:08:21.325916 ±185 _, GMT.

A second recording of impact time was made by

recording a 2-MHz spacecraft signal that was passed
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through a 800-kHz filter along with the NASA 100 pulse/s
time code and a 1-MHz signal. This method showed the

impact time to be 14:08:21.825864 ___7 es, GMT.

Both times are uncorrected for wave propagation time,

which is estimated to be 1.32704 s. It is interesting to
note that the two methods are in agreement; the second-

method time value lies within the stated uncertainty of

the first-method time value. This second method is con-

sidered more accurate than the first method, but has a

disadvantage since it takes two weeks of reduction time

compared to the real-time readout.

The conclusion is that, neglecting signal transit time,

Ranger IX impacted the moon at 14:08:21.825864 _+__7_s,

GMT, on March 24, 1965.
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Appendix A

Definition of the Miss Parameter H

_-=
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Definition of the Miss Parameter B

The miss parameter B is used at ]PL to measure miss

distances for lunar and interplanetary trajectories and is

described by W. Kiznei" in Ref. 4. Parameter B has the

desirable feature of being very nearly a linear function

of changes in injection conditions.

The osculating conic at closest approach to the target

body is used in defining B, which is the vector from the

target's center-of-mass perpendicular to the incoming
asymptote. Let Sx be a unit vector in the direction of the

incoming asymptote. The orientation of B in the plane
normal to Si is described in terms of two unit vectors R

and T, normal to S1. Vector T is taken parallel to a fixed

reference plane and R completes a right-handed ortho-

gonal system. Figure A-1 illustrates the situation.

The Ranger IX work has used the orbital plane of the
moon as the reference plane. If W is a unit vector normal

to the orbital plane, (W in direction of 11_ X V_, where

R.u is radius vector to moon from earth, and V_ is the

space-fixed velocity of the moon re/ative to. the earth's

center), then T = SIX W defines the coordinate system.

PLANE OF THE

APPROACH

TRAJECTORY

PLANE

BODY

SI

R

s/
INCOMING

ASYMPTOTE

TARGE_CENTERED
HYPERBOLA

Fig. A-1. Definition of B-T, B'R system

OUTGOING
ASYMPTOTE
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Appendix B

Ranger IX Space Trajectory for Premaneuver Orbit
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- Appendix C

Ranger IX Space Trajectory for Postmaneuver Orbit
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Tables Related to Trajectory Printout
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Tables Related to Trajectory Printout

Table D-1. Ranger IX trajectory key

Printout column (data key and type}
Group Row

1 2 3 4 5 6

1 GME J

2 G A

A 3 GMM GMS

4 EGM MGM

5 ARA GB

INJECTION CONDITIONS

6 GEOCENTRIC XO

B 7 CARTESIAN

TIME PAST INJECTION

GEOCENTRIC

8 X Y

9 R DEC

10 R LAT

11 XS YS

C 12 XM YM

13 XT YT

14 RS VS

15 GED ALT

16 DUT DT

EPOCH PERICENTER PASSAGE

17 SMA ECC

18 VH C3

19 TA MTA

2O X Y

21 INC LAN

22 WX WY

23 QX QY

24 BX BY

25 DAP RAP

26 BTQ BRQ

HELIOCENTRIC

27 X Y

28 R LAT

29 XE YE

30 XT YT

31 LTE LOE

32 EPS ESP

33 MPS MSP

34 EPT ETP

35 SET STE

36 QCE GCT

37 REP VEP

TARGET

YO

H D RE REM

B C OME AU

GMV GMA GMB GMJ

JA RA

MAS SC

JULIAN DATE MONTH, DAY, YEAR h, mln, s

ZO DXO DYO DZO

TO GHA GHO

JULIAN DATE MONTH, DAY, YEAR h, rain, s

EQUATORIAL COORDINATES

Z DX DY DZ

RA V PTH AZ

LON VE PTE AZE

ZS DXS DYS DZS

ZM DXM DYM DZM

ZT DXT DYT DZT

RM VM RT VT

LOS RAS RAM" LOM

DR SHA DES DEM

GEOCENTRIC CONIC

JULIAN DATE MONTH, DAY, YEAR h, min, s

B SLR APO RCA

C1 TFP TF PER

EA MA C3J TFI

ALL VECTORS REFERENCED TO EARTH EQUATOR PLANE

Z DX DY DZ

A,PF MX MY MZ

WZ PX PY PZ

QZ RX RY RZ

BZ TX TY TZ

B THA

EQUATORIAL COORDINATES

Z DX DY DZ

LON V PTH AZ

ZE DXE DYE DZE

ZT DXT DYT DZT

LTT LOT RST VST

SEP EPM EMP MEP

SMP SEM EMS ESM

TEP TPS TSP STP

EST RPM RPT SPN

SIP CPT SIN DI

CPE CPS D2 D3
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Table D-1 (contd)

Group Row

38

39

40
G

41

42

43

44

45

H 46

47

48

49

50

51

52

1 53

54

55

56

57

58
J

59

Printout column (data key and type)

1 2 3 4 5 6

SELENOCENTRIC EQUATORIAL COORDINATES

X Y Z DX DY DZ

R DEC RA V PTH AZ

R LAT LON VP PTP AZP

LTS LNS LTE LNE

ALT SHA ALP DR DP ASD

HGE SVL HNG SIA

SELENOCENTRIC CONIC

EPOCH OF PERICENTER PASSAGE JULIAN DATE MONTH, DAY, YEAR h, min, s

SMA ECC B SLR APO RCA

VH C3 C1 TFP TF LTF

TA MTA EA MA C3J TFI

ZAE ZAP ZAC DEF IR GP

OP1 OY OP2

ALL VECTORS REFERENCED TO PRINCIPAL PLANE

X Y Z DX DY

INC LAN APF MX MY

WX WY WZ PX PY

QX QY QZ RX RY

BX BY BZ TX TY

SXI SYI SZI DAI RAI

SXO SYO SZO DAO RAO

ETE ETS ETC

BT-- BR-- B THA

XOCTAL YOCTAL ZOCTAL XOCTAL _¢OCTAL ZOCTAL

YYMMDDDHH TTSSSSS SOCTAL

DZ

MZ

PZ

RZ

TZ
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Table D-2. Ranger IX trajectory key definitions

Group/row Key

A/1 GME

J

H

D

RE

REM

A/2

A/3

A/4

A/5

G

A

B •
i

C

OME

AU

GMM

GMS

GMV

GMA

GMB

GMJ

EGM

MGM

JA

RA

ARA

GB

MAS

SC

Definition

Universal gravitational constant times mass of

earth, km3/s _

Coefficient of second harmonic in earth's poten-

tial function

Coefficient of third harmonic in earth's potential

function

Coefficient of fourth /_armonic in earth's poten-

tial function

Earth radius used in potential tunction, km

Conversion factor for converting lunar ephe-

merides into km

Universal constant of gravitation, km3/kg-s 2

Moments of inertia about principal axis for

moon, kg/km 2

Sidereal rotation rate of earth, deg/s

Astronomical unit, km

Universal gravitational constant times mass of

moon, km3/s _

Universal gravitational constant times mass of

sun, km3/s 2

Universal gravitational constant times mass of

Venus, km3/s _

Unlversal gravitational constant times mass of

Mars, km_ /s _

Universal gravitaHonal constant times mass of

earth--moon, km3/s:

Universal gravitational constant times mass of

Jupiter, km3/s 2

Universal gravitational constant times mass of

earth used for scaling ephemeris, km3/s _

Universal gravitational constant times mass of

moon used for scaling ephemeris, km3/s 1

Coefficient of second harmonic in Mars potential

function

Mars radius used _n potential function

Fronta/ area of spacecraft, m =

Multiple of % of reflected radiant energy

Mass of spacecraft, kg

Solar radiation constant (kg-km/s _) 10 -e

Group�row Key Definition

B

B/6

B/7

C/8

C/9

x°fYO

ZO

DXO p

DYO •

DZO i

TO

GHA

GHO

X I

Y

Z I

DX

DY'.
q

DZ

R

DEC

RA

V

PTH

AZ

Injection conditions are vernal equinox Car-

tesian coordinates in a geocentric equatorlal

system: prlnclpal direction X is vernal equinox

direction of date, principal plane XY is equa-

torial plane of date, and Z is along the direc-

tion of earth's spin axis of date.

r

Cartesian components of probe radius vector,

km

Cartesian components of probe space-fixed

velocity vector, km/s

Time of injecllon in seconds past midnight of

day before launch, s

HA of Greenwich at injection epoch, deg

HA of Greenwich at midnight of day before

launch, deg

Inertial posit;on and velocity of probe, sun,

.moon, and target body in a geocentric equa-

torial system: principal direction X is vernal

equinox direction of date, principal plane

XY is equatorial plane of date, and Z is along

the direction of earth's spin axis of date.

Miscellaneous parameters are also included.

Cartesian components of probe radius vector,

km

Cartesian components of probe space-fixed

velocity vector, km/s

Probe radius distance, km

Probe declination angle, deg

Probe right-ascenslon angle, deg

Probe space-fixed velocity, km/s

Pitch angle of probe space-flxed velocity vector

with respect to local horizontal, deg

Azimuth angle of probe space-fixed velocity

vector measured East of true North, deg
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Table D-2 (contd)

Group/row Key

C/10 a

c/]]

C/12

C/13

C/14

C/15

R

LAT

LON

VE

PTE

AZE

xs1YS

ZS

DXS 1
DYS

DZS

YM

ZM

DXM

DYM j
I

DZM

x,1YT

ZT

DXT t

DYT •

DZTI

RS

VS

RM

VM

RT

VT

GED

ALT

LOS

RAS

RAM

LOM

Definition

Probe radius distance, km

Probe geocentric latltude, deg

Probe East longitude, deg

Probe earth-flxed velocity, km/s

Pitch angle of the probe earth-flxed velocity

vector with _especf to the local horizontal,

deg

Azimuth angle of the probe earth-fixed veloc-

ity vector measured East of true North, deg

Cartesian components of the sun radius vector,

km

Cartesian components of the sun space-flxed

velocity vector, km/s

Cartesian components of the moon radius

vector, km

Cartesian components of the moon space-flxed

velocity vector, km/s

Cartesian components of the target radius

vector, km

Cartesian components of the target space-flxed

velocity vector, km/s

Sun radius distance, km

Sun space-flxed velocity, km/s

Moon radius distance, km

Moon space-flxed velocity, km/s

Target radius distance, km

Target space-fixed velocity, km/s

Geodetic latitude of the probe, deg

Altitude of the probe above the earth's surface,

km

East longitude of the sun in coordinate system

defined in Row 10, deg

Right ascension of the sun, deg

Right ascension of the moon, deg

East longitude of the moon in coordinate system

defined in Row 10, deg

Group/row Key Definition

C/16 DUT

DT

DR

SHA

DES

DEM

Ephemeris time minus Universal Time, s

Adams-Moulton step size, s

Radial velocity of probe, km/s

Sun shadow parameter, km

Declination of the sun, deg

Declination of the moon, deg

D General characteristics of the geocentric conic

D/17 SMA

ECC

B

SLR

APO

RCA

D/18 VH

C3

D/19

E/20

C1

TFP

TF

PER

TA

MTA

EA

MA

C3J

TFI

X

yI,

z I

DX r

DY.

DZ b

INC

LAN

APF

E/21

Semlmaior axis, km

Eccentrlc[ty

Magnitude of the impact parameter, b km

Semilatus rectum, km

Apogee distance, km

Magnitude of the closest approach vector, km

Hyperbolic excess speed, km/s

Twice the energy (vls viva energy integral,

km:/s s)

Angular momentum, km:/s

Time from perlcenter passage, s

Time from injection to pericenter passage, h

Period, min

True anomaly, deg

Maximum true anomaly, deg

Eccentric anomaly, deg

Mean anomaly, deg

Earth-moon Jacobi constant, km_/s s

Time from injection, h

Characteristics of the Earth conic in the geo-

centric equatorial system described under

Group B

Cartesian components of the probe radius

vector, krn

Cartesian components of the probe space-flxed

velocity vector, km/s

Inclination of the orbit plane to the equatorial

plane, deg

Longitude of the ascending node, cleg

Argument of pericenter, deg

=These are earth-flxed spherical coordinates In a geocentric equatorial system. The principal direction X is directed toward Greenwich and is the intersection of the meridian

plane of Greenwich with the equatorial plane. The prlnclpal plane Is the earth's geometrlcal equatorial plane. X, Y, and Z are along the direction of the earth's geometrical

North direction.

bSee Appendix A.
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Table D-2 (contd)

Group/row Key Definition

E/21 MX I
{contd) MY

MZ

E/22 WXl

WY.

WZ

PX ,

PY
i'

PZ

E/23 QZQYQXI

'xfRY

RZ

E/24 BzByBX1

'xlTY

TZ

E/25 DAP

RAP

E/26 BTQ

BRQ

B

THA

F/27 X

Y
I'

Z

DX

DY',

DZ I

Components of a unit vector that lies in orbit

plane and is normal to radius vector R

M_W× R

lal

Components of a unit vector normal to the conic

W R×V
IR×Vl

Components of a unit vector in direction of

perigee

Components of a unit vector perpendicular to

perigee direction, vector P, and being in orbit

plane Q-_'W X P

Components of unit vector R b

Components of impact parameter B, b km

Components of unit vector T b

Declination of asymptote, deg

Right ascension of asymptote, deg

Proiectlon of _mpact parameters B b upon the

vector T, km

Proiection of impact parameters n b upon the

vector R, km

The magnitude of impact parameter B, b km

Angle between parameter B b and vector T

measured clockwise from T, deg

Inertial position and velocity of probe, sun,

moon, and target body in a heliocentric equa-

torial system: principal direction X is vernal

equinox direction of date, principal plane XY

is equatorial plane of date, and Z is along the

direction of earth's spin axis of date. Miscel-

laneous parameters are also included.

Cartesian components of probe radius vector,

km

Cartesian components of probe space-fixed

velocity vector, km/s

Group/row Key Definition

F/28

F/29

F/3O

F/31

F/32

F/33

F134

R

LAT

LON

V

PTH

AZ

XE1YE

ZE

DXE l

DYE

DZE

XT

_r

ZT I

DXT p

DYT.

DZT I

LTE

LOE

LTT

LOT

RST

VST

EPS

ESP

SEP

EPM

EMP

MEP

MPS

MSP

SMP

SEM

EMS

ESM

EPT

ETP

TEP

TPS

TSP

STP

Sun-probe radi.us distance, km

Probe celestial declination, deg

Probe celestial right ascension, deg

Probe space-fixed velocity, km/s

Pitch angle of probe space-flxed velocity vector

with respect to local horizontal, deg

Azimuth angle of probe space-fixed velocity

vector measured East of true North, deg

Cartesian components of earth radius vector,

km

Cartesian components of earth space-flxed

velocity vector, km/s

Cartesian components of target radius vector,

km

Cartesian components of target space-flxed

velocity vector, km/s

Celestial latitude of earth, deg

Celestial longitude of earth, deg

Celestial latitude of target, deg

Celestial longitude of target, deg

Sun-target range, km

Sun-target veloclty, km/s

Earth-probe-sun angle, deg

Earth-sun-probe angle, deg

Sun-earth-probe angle, deg

Earth-probe-moon angle, deg

Earth-moon-probe angle, deg

Moon-earth-probe angle, deg

Moon-probe--sun angle, deg

Moon-sun-probe angle, deg

Sun-moon-probe angle, Fleg

Sun-earth-moon angle, deg

Earth-moon-sun angle, deg

Eartl_-sun-moon angle, deg

Earth-probe-target angle, deg

Earth-target-probe angle, deg

Target-earth-probe angle, deg

Target-probe-sun angle, deg

Target-sun-probe angle, deg

Sun-target-probe angle, deg

bSee Appendix A.
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Table D-2 (contd)

- ,1,

Group/row Key Definition

F/35 SET

STE

EST

RPM

RPT

SPN

F/36 GCE

GCT

SIP

CPT

SIN

DI

F/37 REP

VEP

CPE

CPS

D2

D3

G/38,39

G/40,

41,

42

G/38 X
i

Y
I'

Z

DX

DY •

DZ I

G/39 R

DEC

Sun-earth-target angle, deg

Sun-target-earth angle, deg

Earth-sun-target angle, deg

Moon-probe radius distance, km

Target-probe radius distance, km

Sun-probe-near limb of earth angle, deg

Clock angle of earth, deg

Clock angle of target, deg

Sun-probe-near llmb of target angle, deg

Canopus-probe-near limb of target angle, deg

Canopus-probe-near limb of target angle, deg

Radius of a circle (target) used in construction

of visible planet, cm

Earth-probe distance, km

Velocity of the probe with respect to earth,

km/s

Canopus-probe-earth angle, deg

Canopus-probe-sun angle, deg

Semimlnor axis of ellipse used in construction

of visible planet, cm

Distance from intersection of ellipse with circle

to diameter (of circle) that is perpendicular

to DI, in construction of visible planet, cm

Inertial position of probe in a selenocentric

equatorial system: principal direction X is

vernal equinox direction of date, principal

plane XY is geocentric equatorial plane of

date_ and Z is along the direction of earth's

spin axis of date.

Selenocentric-flxed spherical coordinates of

probe, sun, and earth in a selenocentric equa-

torial system: principal direction X is in direc-

tion of mean moon-earth llne, principal plane

XY is mean selenocentric equatorial plane,

and Z is along the direction of moon's mean

spin axis. Miscellaneous parameters ore also

included.

Cartesian components of probe radius vector,

km

Cartesian components of probe velocity vector,

km/s

Probe radius distance, km

Probe declination angle, deg

CSamecoordinatesystemas defined under Group B except centeredat the probe.

Group/row Key

G/39

(contd)

G/40

G/41

G/42

G/43

RA

V

PTH

AZ

R

I.AT

LON

VP

PTP

AZP

LTS

LHS

LTE

LNE

ALT

SHA

ALP

DR

DP

ASD

HGE

SVL

HNG

SIA

Definition

Probe rlght-ascenslon angle, deg

Probe space-flxed velocity, km/s

Pitch angle of probe space-fixed velocity vector

with respect to local horizontal, deg

Azimuth angle of probe space-flxed velocity

vector measured East of true North, deg

Probe radius distance, km

Probe setenocentr;c latitude, deg

Probe selenocentrlc East longitude, deg

Probe selenocentrlc-fixed velocity, km/s

Pitch angle of probe selenocentrlc-fixed velocity

vector with respect to local horizontal, deg

Azimuth angle of probe selenocentrlc fllxed

velocity vector measured East of moon's

mean spin axis, deg

Selenocentric latitude of sun, deg

Selenocentric longitude of sun, deg

Selenocentrlc latitude of earth, deg

Selenocentrlc longitude of earth, deg

Altitude of probe above moon's surface, km

Sun shadow parameter, km

Illumlnated crescent orientation viewing

angle, deg

First time derivative of probe radius distance,

km/s

First time derivative of probe radius direction,

deg/s

Angular semidiameter of moon as seen from

probe, deg

Right ascension of earth in probe coordinate

system,c deg

Declination of moon in probe coordinate

system,c deg

Right ascension of moon in probe coordinate

system,c deg

Earth-probe-moon angle minus ASD, deg

Characteristics of the selenocentr[c conic in geo-

centric equatorial system described under

Group B, except centered at moon.
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Group/row Key Definition

H/44 SMA

ECC

B

SLR

APO

RCA

H/45 VH

C3

H/46

H/47

H/48

C1

TFP

TF

LTF

TA

MTA

EA

MA

C3J

TFI

ZAE

ZAP

ZAC

DEF

IR

GP

OP1

OY

OP2

Semlmajor axis, km

Eccentricity

Magnitude of impact parameter B, b km

Semilatus rectum, km

Apogee distance, km

Magnitude of closest approach vector, km

Hyperbolic excess speed, km/s

Twice the energy (vls viva energy integral,

km:/s _)

Angular momentum, km:/s

Time from peHcenter passage, s

Time from injection to perlcenter passage, h

Linearlzed tlme-of-fllght, h

True anomaly, deg

Maximum true anomaly, deg

Eccentric anomaly, deg

Mean anomaly, deg

Earth-moon Jacobl constant, km2/s:

Time from injection, h

Angle between incoming asymptote and

moon-earth vector, deg

Angle between incoming asymptote and

moon-sun vector, dee

Angle between incoming asymptote and

moon-Canopus vector, deg

Angle between incoming and outgoing

asymptotes, deg

Maximum B vector magnitude for lunar impact,

km

Angle between incoming asymptote and its

projection on lunar orbital plane

Spacecraft nominal terminal maneuver first-

pitch turn, deg

Spacecraft nominal terminal maneuver yaw

turn, deg

Spacecraft nominal terminal maneuver second-

pitch turn, deg

I Characteristlcs of selenocentrlc conic in speci-

fied "principal plane" coordinate system

bSee Appendix A.

Table D-2 (contd)

Group/row Key Definition

1/49 X

Y
4

Z

°x1DY

DZ

1/50 INC

LAN

APF

MY

MZ

1/51 wzWyWXf

PX I

PY

PZ p

1/52 QX

Qy I.

QZ q

'xIRY

RZ

1/53 BzByBX1

TY

TZ

1/54 SXI ,

SYI •

SZI

DAI

PAl

Cartesian components of probe radius vector,

km

Cartesian components of probe space-fixed

velocity vector, km/s

Inclination of orbit plane to equatorial plane,

deg

Longitude of ascending node, deg

Argument of perlcenter, deg

Components of a unit vector that lles in orbit

plane and is normal to radius vector R.

R
M _WX--

[R]

Components of a unit vector normal to the

conic

R×V
W-

IR×vi

Components of a unit vector in the direction

of perigee

Components of a unit vector perpendicular to

perigee direction, vector P, and being in

orbit plane Q - W X P

Components of unit vector ]R b

Components of impact parameter B, b km

Components of unit vector T h

Components of unit vector _z h along the direc-

tion of incoming asymptote

Declination of outgoing asymptote, b deg

Right ascension of incoming asymptote, b deg
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Table D-2 (contd)

Group/row Key Definition

i/5s

1156

1/57

J

sxo I
SYO

SZO )

DAO

RAO

ETE

ETS

ETC

B_

BR _t

B

THA

Components of unit vector So u along direction

of outgoing asymptote

Declination of outgoing asymptote, b deg

Right ascension of outgoing asymptote, b deg

Angle between vector T and projection of

moon-earth vector on R-T plane, deg

Angle between vector T and projection of

moon-sun vector on R-T plane, deg

Angle between vector T and projection of

moon-Canopus vector on R-T plane, deg

Project;on of impact parameter g b upon vector

T, km

Projection of impact parameter g b upon vector

R, km

Magnitude of impact parameter B, b km

Angle between parameter g and vector T, mea-

sured clockwise from T, deg

Cartesian coordinates and epoch of injection

conditions in geocentric equatorial system de-

scribed under Group B

Group/row Key Definition

J/5_

J/59

XOCTAL

YOCTAL',

ZOCTALII

_OCTAtl
90_AL •
_OCTALb

YY

MM

DDD

HH

TT

SSSSS

SOCTAL

Cartesian components of probe radius vector at

injection in octal representation, km

Cartesian components of probe space-fixed ve-

locity vector at injection in octal representa-

tion, km/s

Epoch of injection

Years past 1900

Month

Day of month

Hours

Minutes

Milliseconds

Seconds in octal representation, GMT

Time past midnight on day (DD), month (MM),

and year (YY-t-1900) at which injection

epoch occurs is time determined by sum of

HH, TT, SSSSS and SOCTAL

bSee Appendix A.

dprlnclpal planes: Q = earth equatorial plane, C = ecliptic plane, 0 = lunar orbital plane, and T = true lunar equator.
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Table D-3. Ranger IX trajectory constants and conversion factors

Constants

GM_un

GMv_..us

GM e"

GMe- ¢

GM¢ b

GM_ars

GM.Tup I ter

Msu_/M'renu.

MS../ME_th

Msun/M_r t_l.xfoon

Msu./M_[*rs

Equatorial radius of earth

1 AU

Elllpticity of earth

Conversion from feet to meters

Atmospheric model

Conversion factors

1.32715445 X 1011 kmS/s z

3.247695 X 105 kmS/s 2

3.986032 X 105 km3/s 2

4.03503 X 10 s kmS/s =

4.900759 X 10 = km3/s "

4.297780 X 104 km3/s 2

1.267106 X 10 _ km_/s:

408645

332951.3

81.335

328908

3,088,000

1047.39

6378.3149 km

1.495990 X 10s km

1/298.3

0.3048

1959 ARDC

Sidereal rotation rate of earth 4.1780742 X 10 -3 deg/s

Universal constant of gravitation 6,671 X 10 -'_° km3/kg-s _

Speed of light 2.997925 X I0 s km/s

Mean moon radius 1738.09 km

a3.986005 X 105 kmS/s2 was used for the pre-midcourse orbit.

b4.9007604 X 103 kmS/s s was used for the pre-m[dcourse orbit.

Constants Conversion factors

Moon moments of inertia about

principal axis

Lunar and solar ephemerides

Geometrical earth model, used in

locating, tracking and launch-

ing facilities on the earth

Earth potential function:

A ---- 0.88746 X 10 =' kg km =

B _ 0.88764 X 10 '9 kg km s

C ---- 0.88801 X 10 "_gkg km =

The moon and sun positions are

obtained from the joint JPL-STL

ephemerides. For purposes of

converting into kilometers, the

conversion factors are:

I AU _ 1.495990 X 10 _ km

1 e.r. --_ 6378.3149 km

Clarke spheroid of 1866:

a _ 6378.2064 km

b _- 6356.5838 km

e3 _ 0.006768657997291

_) (R, _6) -- -{- _ (I -- 3 sin: $) _- _-- ._ (3 -- 5 sln 2 $) (sin q_)

+___D ll_ (3 _ 30 sln _ _l_ 35 sin 4_)1
35 R, /

where

R ---- geocentric distance

_b z geocentric latitude

J z 1.62345 X 10 -3

H ---- --0.575 X i0 -5

D _- 0.7875 X 10 -s
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Appendix E

Ranger IX Premaneuver ODP Printout
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Appendix F

Ranger IX Postmaneuver ODP Printout
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Appendix G

ODP Format Description
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ODP Format Description

The ODP printouts of Appendixes E and F are pre-

sented in the following sequence: Block No. references

are only for identification purposes to the appendixes.
All units are in kilometers and seconds unless otherwise

specified.

Covarianee matrix of estimated parameters, at in-

jection epoch, from last iteration.

Correlation matrix of estimated parameters, at in-

jection epoeh, from last iteration.

Block

No. Printout

1 Control card input.

2 Input covariance matrix of estimated parameters

from postmaneuver data a priori.

8 Inverse of Block No. 2.

4 Trajectory based on injection conditions from pre-

vious iteration. Its format is explained in Appen-
dix D.

10 Residual listings and data statistics for the tracking

stations; first the residuals will be listed and then

followed by the statistics (see Fig. G-2 for explana-

tion of format).

The above sequence is repeated until the orbit con-

verges. In the last iteration, a trajectory based on the

converged estimated parameters is run out to lunar

eneounter. (See Appendix D for explanation of trajeetory

format.)

5 The normal equation coefficients combined with

the a priori matrix at injection epoch.

6 Correlation matrix based on Block No, 5.

7 Solution vector and statistics of estimated param-

eters from last iteration (see Fig. G-1 for explana-

tion of format),

Following the trajectory printout is the U matrix

(Block No. 11) that maps the covariance matrix at

injection to encounter, Immediately below the U matrix

is the covariance matrix (Block No, 12) on the estimated

parameters at impact or closest approach epoch. This
matrix is formed by mapping the eovarianee matrix at

injection to impact in double precision.

ITERATION NUMBER X

Q

Task Identification

EPOCH yr/mo/day XX XX XX.XXX a CLOCK XX XX XX b

DQ STDEVDQ OLD Q NEW Q

SOS e .XXXXX QSOS a .XXXXX d

NOMINAl. Q DQ (NOM)

X, Y, Z = Position space-fixed

Cartesian component, km

DX, DY_ DZ = Velocity space-fixed

Cartesian, km/s

RI = Radius KE_ km = GM_, kin3/ss

LA = Latitude RE, = Radius of

deg earth to

scale

ephemeris, km

LO = Longitude KM, = GM(,

deg km'_/s _

Difference in Standard Value of esti- Value of estl-

estimafed deviations an mated para- mated para-

parameters estimated meters from meters on this

from previous parameters previous iter- iteration

iteration and arian (initial

this iteration estimate on

first iter atlonl

Initial estimate Total difference

of parameters in new Q and

nominal Q

aGMT in h, mln, s.

bCurrent Pacific Coast tlme [n h, mln, s.

eWelghted sum of the squares of 1he residuals (floollng paint numbers].

dWelghted sum of the squares of the residuals plus the product 6x _' 1-_-l_x where dx is the difference in the a priori Q and the value of Q on the particular interotlon, and F is

on a priori covarlance on Q [floating point numbers).

Fig. G-1. Format explanation of Block No. 7 of ODP
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TIME

XX XX XX

STATION NUMBER XX yr/mo/day ITERATION NUMBER X

FREQUENCY XXXX,X (last digits in transmitter frequency 2966 XXXX.X in Hz)

TC Q CC3

XX XX .XXXXXXXX XX .XXX XX .XXXX"

Doppler Trans- Two-way Associated

count mitring doppler _CC3_ weight in

time, s station value in Hz floating

number (floating point point

number)

aReslduals followed by an asterisk (*) hove been deleted from flt.

Residual

Iobserved

minus

calculated), Hz

PASS NUMBER XX

Fig. G-2. Format explanation of Block No. 10 of ODP

There are three blocks following the covariance matrix.

The first block (No. 18) is a covariance matrix N formed

by mapping the upper 6 X 6 matrix of the covariance

of impact into a new coordinate system (explained in

Appendix A of this report) (a_L is in h:). The second
block (No. 14) is simply the correlation matrix of Block
No. 13 covariance matrix. The third block (No. 15) is a

mapping matrix that maps injection components into the

B • T, B • R, etc. system, which is shown in Fig. A-l.

These components are defined as follows:

Key

B=

B • RO =

B.TO _

B • RT =

B.Tr=

TL=

Definition

Vector measured from center of moon per-

pendicular to incoming asymptote, km.

B vector dotted on R axis, km (T axis in

moon's orbital plane).

B vector dotted on T axis, km (T axis in

moon's orbital plane).

B vector dotted on R axis, km (T axis in

equatorial plane of moon).

B vector dotted on T axis, km (T axis in

equatorial plane of moon).

Linearized time of flight, h.

SMAA = Largest eigenvalue of upper 2 X 2 of N ma-

trix (commonly called semimajor axis of a

40% dispersion ellipse in B-plane).

SMIA = Semiminor axis of dispersion ellipse or the

other eigenvalue of upper 2 X 2.

THETA = Orientation angle of semimajor axis of dis-

persion ellipse measured counterclockwise
from T axis.

DEL T = Uncertainty in time of flight, s.

DEL B = (N_ + N.._) v" where Ns are from Block
No. 18.

DEL S = V_ (DEL T) position uncertainty in direction
of incoming asymptote. Where Vo0 = hyper-

bolic excess velocity, km/s.

TF = Orbital time of flight, in hours from injection

epoch to impact or closest approach.

The block (No. 16) following the B plane parameters

is formed by rotating the upper 8 × 8 of the eovarianee

matrix N (target orbital plane) into the target equatorial
plane.
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